Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of microbial mats in the production of reduced gases on the early Earth

Abstract

The advent of oxygenic photosynthesis on Earth may have increased global biological productivity by a factor of 100–1,000 (ref. 1), profoundly affecting both geochemical and biological evolution. Much of this new productivity probably occurred in microbial mats, which incorporate a range of photosynthetic and anaerobic microorganisms in extremely close physical proximity2,3. The potential contribution of these systems to global biogeochemical change would have depended on the nature of the interactions among these mat microorganisms. Here we report that in modern, cyanobacteria-dominated mats from hypersaline environments in Guerrero Negro, Mexico, photosynthetic microorganisms generate H2 and CO—gases that provide a basis for direct chemical interactions with neighbouring chemotrophic and heterotrophic microbes4. We also observe an unexpected flux of CH4, which is probably related to H2-based alteration of the redox potential within the mats. These fluxes would have been most important during the nearly 2-billion-year period during which photosynthetic mats contributed substantially to biological productivity5—and hence, to biogeochemistry—on Earth. In particular, the large fluxes of H2 that we observe could, with subsequent escape to space, represent a potentially important mechanism for oxidation of the primitive oceans and atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light-driven gas chemistry in the surface layer of intertidal mats dominated by Lyngbya spp. cyanobacteria.
Figure 2: Depth distribution of partial pressures of CO (a) and H2 (b) in M. chthonoplastes mats.
Figure 3: Depth distribution of H2 partial pressure (open circles) and CH4 production rate (filled circles).

Similar content being viewed by others

References

  1. DesMarais, D. J. in Geomicrobiology (eds Banfield, J. & Nealson, K.) 429–445 (Mineralogical Society of America, Washington DC, 1997).

    Book  Google Scholar 

  2. Cohen, Y. et al. Ancient Stromatolites and Microbial Mats (Liss, New York, 1984).

    Google Scholar 

  3. Stal, L. J. & Caumette, P. Microbial Mats: Structure, Development and Environmental Significance (Springer, Berlin, 1994).

    Book  Google Scholar 

  4. Conrad, R. Biogeochemistry and ecophysiology of atmospheric CO and H2. Adv. Microb. Ecol. 10, 231–283 (1988).

    Article  CAS  Google Scholar 

  5. Walter, M. R. (ed.) Stromatolites (Elsevier, Amsterdam, 1976).

    Google Scholar 

  6. DesMarais, D. J. in Advances in Microbial Ecology (ed. Jones, J. G.) 251–274 (Plenum, New York, 1995).

    Book  Google Scholar 

  7. Canfield, D. E. & DesMarais, D. J. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim. Cosmochim. Acta 57, 3971–3984 (1993).

    Article  CAS  Google Scholar 

  8. Bebout, B. M., Paerl, H. W., Bauer, J. M., Canfield, D. E. & DesMarais, D. J. in Microbial Mats: Structure, Development, and Environmental Significance (eds Stal, L. J. & Caumette, P.) 265–271 (Springer, Berlin, 1994).

    Book  Google Scholar 

  9. Newton, W., Postgate, J. R. & Rodriguez-Barrueco, C. Recent Developments in Nitrogen Fixation (Academic, London, 1977).

    Google Scholar 

  10. Stal, L. J., Heyer, H., Bekker, S., Villbrandt, M. & Krumbein, W. E. in Microbial Mats: Physiological Ecology of Benthic Microbial Communities (eds Cohen, Y. & Rosenberg, E.) 255–276 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  11. Fay, P. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Rev. 56, 340–373 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stal, L. J. & Moezelaar, R. Fermentation in cyanobacteria. FEMS Microbiol. Rev. 21, 179–211 (1997).

    Article  CAS  Google Scholar 

  13. Lovley, D. R. & Klug, M. J. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 45, 187–192 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Iannotti, E. L., Kafkewitz, D., Wolin, M. J. & Bryant, M. P. Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: Changes caused by interspecies transfer of H2. J. Bacteriol. 114, 1231–1240 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wolin, M. J. & Miller, T. L. Interspecies hydrogen transfer: 15 years later. ASM News 48, 561–565 (1982).

    Google Scholar 

  16. Dolfing, J. in Biology of Anaerobic Microorganisms (ed. Zehnder, A. J. B.) 417–468 (Wiley-Interscience, New York, 1988).

    Google Scholar 

  17. Schink, B. in Biology of Anaerobic Microorganisms (ed. Zehnder, A. J. B.) 771–846 (Wiley-Interscience, New York, 1988).

    Google Scholar 

  18. Skyring, G. W., Lynch, R. M. & Smith, G. D. in Microbial Mats: Physiological Ecology of Benthic Microbial Communities (eds Cohen, Y. & Rosenberg, E.) 170–179 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  19. Fenchel, T. & Finlay, B. J. Ecology and Evolution in Anoxic Worlds (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  20. Nisbet, E. G. & Fowler, C. M. R. Archaean metabolic evolution of microbial mats. Proc. R. Soc. Lond. B 266, 2375–2382 (1999).

    Article  Google Scholar 

  21. Holland, H. D. Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, Princeton, 1984).

    Google Scholar 

  22. Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).

    Article  CAS  Google Scholar 

  23. DesMarais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992).

    Article  CAS  Google Scholar 

  24. Walker, J. C. G. Evolution of the Atmosphere (Macmillan, New York, 1977).

    Google Scholar 

  25. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Glob. Biogeochem. Cycles 8, 451–463 (1994).

    Article  CAS  Google Scholar 

  26. Elderfield, H. & Schulz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  CAS  Google Scholar 

  27. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Exportadora de Sal, S.A. de C.V. for access to their salt ponds and for logistical support, and S. Miller, P. Visscher and L. Jahnke for discussions. This work was supported by NASA's Astrobiology Institute and Exobiology Program, and by Ames Research Center Director's Discretionary Funds. T.M.H. was supported by a National Research Council fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tori M. Hoehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoehler, T., Bebout, B. & Des Marais, D. The role of microbial mats in the production of reduced gases on the early Earth. Nature 412, 324–327 (2001). https://doi.org/10.1038/35085554

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35085554

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing