Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ion-beam sculpting at nanometre length scales

Abstract

Manipulating matter at the nanometre scale is important for many electronic, chemical and biological advances1,2,3, but present solid-state fabrication methods do not reproducibly achieve dimensional control at the nanometre scale. Here we report a means of fashioning matter at these dimensions that uses low-energy ion beams and reveals surprising atomic transport phenomena that occur in a variety of materials and geometries. The method is implemented in a feedback-controlled sputtering system that provides fine control over ion beam exposure and sample temperature. We call the method “ion-beam sculpting”, and apply it to the problem of fabricating a molecular-scale hole, or nanopore, in a thin insulating solid-state membrane. Such pores can serve to localize molecular-scale electrical junctions and switches4,5,6 and function as masks7 to create other small-scale structures. Nanopores also function as membrane channels in all living systems, where they serve as extremely sensitive electro-mechanical devices that regulate electric potential, ionic flow, and molecular transport across cellular membranes8. We show that ion-beam sculpting can be used to fashion an analogous solid-state device: a robust electronic detector consisting of a single nanopore in a Si3N4 membrane, capable of registering single DNA molecules in aqueous solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy to make nanopores using argon ion-beam sputtering.
Figure 2: Sculpting a nanopore.
Figure 3: Temperature dependence of ion-beam sculpting.
Figure 4: Flux dependence of ion-beam sculpting.
Figure 5: Molecular events in a nanopore detector.

Similar content being viewed by others

References

  1. Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000).

    Article  CAS  Google Scholar 

  2. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Stupp, S. I. & Braun, P. V. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science 277, 1242–1248 (1997).

    Article  CAS  Google Scholar 

  4. Reed, M. A., Zhou, C., Deshpande, M. R. & Muller, C. J. The electrical measurement of molecular junctions. Ann. NY Acad. Sci. 852, 133–144 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Zhou, C., Deshpande, M. R. & Reed, M. A. Nanoscale metal/self-assembled monolayer/metal heterostructures. Appl. Phys. Lett. 71, 611–613 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Ralph, D. C., Black, C. T. & Tinkham, M. Spectroscopic measurements of discrete electronic states in single metal particles. Phys. Rev. Lett. 74, 3241–3244 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Deshmukh, M. M., Ralph, D. C., Thomas, M. & Silcox, J. Nanofabrication using a stencil mask. Appl. Phys. Lett. 75, 1631–1633 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Hille, B. Ionic Channels and Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1992).

    Google Scholar 

  9. Johnson, R. E. & Shou, J. Sputtering of inorganic insulators. K. Danske Vidensk. Selsk. Mat.-fys. Meddr. 43, 403–494 (1993).

    Google Scholar 

  10. Sigmund, P. Introduction to sputtering. K. Danske Vidensk. Selsk. Mat.-fys. Meddr. 43, 7–26 (1993).

    Google Scholar 

  11. Nenandovic, T., Perraillon, B., Bogdanov, Z., Djordjevic, Z. & Milic, M. Sputtering and surface topography of oxides. Nucl. Instrum. Methods B 48, 538–543 (1990).

    Article  ADS  Google Scholar 

  12. Gnaser, H. Ion Irradiation of Solid Surfaces (Springer, Berlin/Heidelberg, New York, 1999).

    Google Scholar 

  13. Mayer, T. M., Chason, E. & Howard, A. J. Roughening instability and ion-induced viscous relaxation of SiO2 surfaces. J. Appl. Phys. 76, 1633–1643 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Carter, G. Viscoelastic buckling and plastic-flow deterministic mechanistic mechanisms for ripple initiation on ion bombarded amorphous solids. Surf. Interf. Anal. 25, 952–954 (1997).

    Article  CAS  Google Scholar 

  15. Brongersma, M. L., Snoeks, E., Dillen, T. V. & Polman, A. Origin of MeV ion irradiation-induced stress changes in SiO2. J. Appl. Phys. 88, 59–64 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Erlebacher, J., Aziz, M. J., Chason, E., Sinclair, M. B. & Floro, J. A. Spontaneous pattern formation on ion bombarded Si(001). Phys. Rev. Lett. 82, 2330–2333 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Erlebacher, J., Aziz, M. J., Chason, E. & Aziz, M. J. Nonlinear amplitude evolution during spontaneous patterning of ion-bombarded Si(001). J. Vacuum Sci. Technol. A 18, 115–120 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Kasianowicz, J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Bezrukov, S. M., Vodyanoy, I. & Parsegian, V. A. Counting polymers moving through a single ion channel. Nature 370, 279–281 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Gu, L. Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adaptor. Nature 398, 686–690 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Hammill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur. J. Physiol. 391, 85–100 (1981).

    Article  Google Scholar 

  22. Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E. & Deamer, D. W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).

    Article  CAS  Google Scholar 

  23. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Bezrukov, S. M. Ion channels as molecular coulter counters to probe metabolite transport. J. Membr. Biol. 174, 1–13 (2000).

    Article  CAS  Google Scholar 

  25. Wolf, S. & Tauber, R. N. Silicon Processing for the VLSI Era 149–224 (Lattice, Sunset Beach, California, 2000).

    Google Scholar 

  26. Rai-Choudhury, P. (ed.) Handbook of Microlithography, Micromachining, and Microfabrication 41–97, 153–195 (SPIE-International Society for Optical Engineering, Bellingham, Washington, 1997).

    Google Scholar 

  27. Ralls, K. S., Buhrman, R. A. & Tiberio, R. C. Fabrication of thin-film metal nanobridges. Appl. Phys. Lett. 55, 2459–2461 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Defense Advanced Research Projects Agency, the National Science Foundation and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jene A. Golovchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Stein, D., McMullan, C. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001). https://doi.org/10.1038/35084037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35084037

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing