Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning

Abstract

Nitrogen is an essential element for life and is often the limiting nutrient for terrestrial ecosystems1,2. As most nitrogen is locked in the kinetically stable form3, N2, in the Earth's atmosphere, processes that can fix N2 into biologically available forms—such as nitrate and ammonia—control the supply of nitrogen for organisms. On the early Earth, nitrogen is thought to have been fixed abiotically, as nitric oxide formed during lightning discharge4,5,6. The advent of biological nitrogen fixation suggests that at some point the demand for fixed nitrogen exceeded the supply from abiotic sources, but the timing and causes of the onset of biological nitrogen fixation remain unclear7,8,9,10,11. Here we report an experimental simulation of nitrogen fixation by lightning over a range of Hadean (4.5–3.8 Gyr ago) and Archaean (3.8–2.5 Gyr ago) atmospheric compositions, from predominantly carbon dioxide to predominantly dinitrogen (but always without oxygen). We infer that, as atmospheric CO2 decreased over the Archaean period, the production of nitric oxide from lightning discharge decreased by two orders of magnitude until about 2.2 Gyr. After this time, the rise in oxygen (or methane) concentrations probably initiated other abiotic sources of nitrogen. Although the temporary reduction in nitric oxide production may have lasted for only 100 Myr or less, this was potentially long enough to cause an ecological crisis that triggered the development of biological nitrogen fixation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation of the nitric oxide yield as a function of the CO2 mixing ratio in simulated lightning in primitive atmospheres.
Figure 2: The ratio of NO to CO produced in laser discharge as a function of CO2 concentration.

Similar content being viewed by others

References

  1. Postgate, J. Nitrogen Fixation 2nd edn, 73 (Edward Arnold, London, 1987).

    Google Scholar 

  2. Rosswall, T. in Some Perspectives of the Major Biogeochemical Cycles (ed. Likens, G. E.) Ch. 2 (Wiley, New York, 1981).

    Google Scholar 

  3. Howard, J. B. & Rees, D. C. Structural basis of biological nitrogen fixation. Chem. Rev. 96, 2965–2982 (1996).

    Article  CAS  Google Scholar 

  4. Yung, Y. L. & McElroy, M. B. Fixation of nitrogen in the prebiotic atmosphere. Science 203, 1002–1004 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Kasting, J. F. & Walker, J. C. G. Limits on oxygen concentrations in the prebiological atmosphere and the rate of abiotic fixation of nitrogen. J. Geophys. Res. 86, 1147–1158 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Kasting, J. F. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere. Origins Life Evol. Biosph. 20, 199–231 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Cloud, P. E. Atmospheric and hydrospheric evolution on the primitive Earth. Science 160, 729–736 (1968).

    Article  ADS  CAS  Google Scholar 

  8. Walker, J. C. G. Evolution of the Atmosphere (MacMillan, New York, 1977).

    Google Scholar 

  9. Schopf, J. W. (ed.) Earth's Earliest Biosphere: its Origin and Evolution (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  10. Raven, J. A. & Yin, Z. H. The past, present and future of nitrogenous compounds in the atmosphere, and their interactions with plants. New Phytol. 139, 205–219 (1998).

    Article  CAS  Google Scholar 

  11. Mancinelli, R. L. & McKay, C. P. The evolution of nitrogen cycling. Origins Life Evol. Biosph. 18, 311–325 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Levine, J. S. et al. Production of nitric oxide by lightning on Venus. Geophys. Res. Lett. 9, 893–896 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Chameides, W. L. & Walker, J. C. G. Rates of fixation by lightning of carbon and nitrogen in possible primitive atmospheres. Origins Life 11, 291–302 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Wang, Y., DeSilva, A. W., Goldenbaum, G. C. & Dickerson, R. R. Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure. J. Geophys. Res. 103, 19149–19159 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Knipovich, O. M., Rubtsova, E. A. & Nekrasov, L. I. Volume recombination of nitrogen atoms in the afterglow of a condensed discharge. Russ. J. Phys. Chem. 62, 867–870 (1988).

    Google Scholar 

  16. NIST Standard Reference Database 17-2Q98 (National Institute of Standards and Technology, Gaithersburg, Maryland, 1998); also at 〈http://www.nist.gov/srd/nist17.htm〉.

  17. Chyba, C. & Sagan, C. Electrical energy sources for organic synthesis on the early Earth. Origins Life Evol. Biosph. 21, 3–17 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Rye, R., Kuo, P. H. & Holland, H. D. Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378, 603–605 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Zahnle, K. J. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth's early atmosphere. J. Geophys. Res. 91, 2819–2834 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Pavlov, A. A., Kasting, J. K., Brown, L. L., Rages, K. A. & Freedman, R. Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11981–11990 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Kasting, J. F., Pavlov, A. A. & Siefert, J. L. A coupled ecosystem-climate model for predicting the methane concentration in the Archean atmosphere. Origins Life Evol. Biosph. 31, 271–285 (2001).

    Article  ADS  CAS  Google Scholar 

  22. Yung, Y. L., Allen, M. & Pinto, J. P. Photochemistry of the atmosphere of Titan. Astrophys. J. Suppl. Ser. 203, 465–506 (1984).

    Article  ADS  Google Scholar 

  23. Young, J. P. W. in Biological Nitrogen Fixation (eds Stacey, G., Burris, R. H. & Evans, H. J.) 43–86 (Chapman & Hall, New York, 1992).

    Google Scholar 

  24. Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmospheric chemistry? Precambrian Res. 96, 63–82 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Rye, R. & Holland, H. D. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298, 621–672 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Golubic, S., Sergeev, V. N. & Knoll, A. H. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia 28, 285–298 (1995).

    Article  CAS  Google Scholar 

  27. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    Article  CAS  Google Scholar 

  28. Schopf, J. W. & Parker, B. M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237, 70–73 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Schopf, J. W. in Prokaryotic Development (eds Brun, Y. V. & Shimkets, L. J.) 105–129 (American Society of Microbiology, Washington DC, 2000).

    Google Scholar 

  30. Jebens, D. S., Lakkaraju, H. S., McKay, C. P. & Borucki, W. J. Time resolved simulation of lightning by LIP. Geophys. Res. Lett. 19, 273–276 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of L. Calva-Alejo. We are indebted to W. Schopf and A. Knoll for their discussions on the palaeontological evidence of nitrogen fixation. We also thank J. Kasting and A. Bar-Nun for discussions. This work was supported by grants from the National Autonomous University of Mexico, the National Council of Science and Technology of Mexico and the NASA Astrobiology programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Navarro-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro-González, R., McKay, C. & Mvondo, D. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412, 61–64 (2001). https://doi.org/10.1038/35083537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083537

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing