Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MOR1 is essential for organizing cortical microtubules in plants

Abstract

Microtubules orchestrate cell division and morphogenesis, but how they disassemble and reappear at different subcellular locations is unknown. Microtubule organizing centres are thought to have an important role, but in higher plants microtubules assemble in ordered configurations even though microtubule organizing centres are inconspicuous or absent. Plant cells generate highly organized microtubule arrays that coordinate mitosis, cytokinesis and expansion. Inhibiting microtubule assembly prevents chromosome separation1, blocks cell division2 and impairs growth polarity3. Microtubules are essential for the formation of cell walls, through an array of plasma-membrane-associated cortical microtubules whose control mechanisms are unknown. Using a genetic strategy to identify microtubule organizing factors in Arabidopsis thaliana, we isolated temperature-sensitive mutant alleles of the MICROTUBULE ORGANIZATION 1 (MOR1) gene. Here we show that MOR1 is the plant version of an ancient family of microtubule-associated proteins4. Point mutations that substitute single amino-acid residues in an amino-terminal HEAT repeat impart reversible temperature-dependent cortical microtubule disruption, showing that MOR1 is essential for cortical microtubule organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations in the MOR1 gene cause temperature-dependent microtubule disruption.
Figure 2: MOR1 protein structure.
Figure 3: Temperature-dependent microtubule disruption in mor1 mutants is reversible.
Figure 4: Morphological consequences of mor1's microtubule disruption.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Data deposits

Sequences are deposited in GenBank under accession no. AF367246.

References

  1. Baskin, T. I. & Cande, W. Z. The structure and function of the mitotic spindle in flowering plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 277– 315 (1990).

    Article  Google Scholar 

  2. Mayer, U., Herzog, U., Berger, F., Inze, D. & Jurgens, G. Mutations in the pilz group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm. Eur. J. Cell Biol. 78, 100– 108 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Baskin, T. I., Wilson, J. E., Cork, A. & Williamson, R. E. Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol. 35, 935– 942 (1994).

    CAS  PubMed  Google Scholar 

  4. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13– 19 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Sugimoto, K., Williamson, R. E. & Wasteneys, G. O. New techniques enable comparative analysis of microtubule orientation, wall texture and growth rate in intact roots of Arabidopsis thaliana. Plant Physiol. 124, 1493– 1506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wasteneys, G. O. The cytoskeleton and growth polarity. Curr. Opin. Plant Biol. 3, 503– 511 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Charrasse, S. et al. The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J. Cell Sci. 111, 1371– 1383 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Cullen, C. F., Deak, P., Glover, D. M. & Ohkura, H. Mini spindles: A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J. Cell Biol. 146, 1005– 1018 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Graf, R., Daunderer, C. & Schliwa, M. Dictyostelium DdCP224 is a microtubule-associated protein and a permanent centrosomal resident involved in centrosome duplication. J. Cell Sci. 113, 1747– 1758 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, P. J. & Huffaker, T. C. Stu2p: A microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271– 1280 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nabeshima, K. et al. p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev. 9, 1572– 1585 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Matthews, L. R., Carter, P., Thierrymieg, D. & Kemphues, K. Zyg-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J. Cell Biol. 141, 1159– 1168 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andrade, M. A., Ponting, C. P., Gibson, T. J. & Bork, P. Homology-based method for identification of protein repeats using statistical significance estimates. J. Mol. Biol. 298, 521– 537 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Andrade, M. A. & Bork, P. Heat repeats in the Huntingtons disease protein. Nature Genet. 11, 115– 116 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Spittle, C., Charrasse, S., Larroque, C. & Cassimeris, L. The interaction of TOGp with microtubules and tubulin. J. Biol. Chem. 275, 20748– 20753 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Kunz, J., Schneider, U., Howald, I., Schmidt, A. & Hall, M. N. HEAT repeats mediate plasma membrane localization of Tor2p in yeast. J. Biol. Chem. 275, 37011– 37020 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Ueda, K., Matsuyama, T. & Hashimoto, T. Visualization of microtubules in living cells of transgenic Arabidopsis thaliana. Protoplasma 206, 201– 206 (1999).

    Article  Google Scholar 

  18. Ueda, K. & Matsuyama, T. Rearrangement of cortical microtubules from transverse to oblique or longitudinal in living cells of transgenic Arabidopsis thaliana. Protoplasma 213, 28– 38 (2000).

    Article  CAS  Google Scholar 

  19. Gard, D. L. & Kirchner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 105, 2203– 2215 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Charrasse, S., Lorca, T., Doree, M. & Larroque, C. The Xenopus XMAP215 and its human homologue TOG proteins interact with cyclin B1 to target p34cdc2 to microtubules during mitosis. Exp. Cell Res. 254, 249– 256 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Vasquez, R. J., Gard, D. L. & Cassimeris, L. Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell. Motil. Cytoskeleton 43, 310– 321 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Andersen, S. S. Xenopus interphase and mitotic microtubule-associated proteins differentially suppress microtubule dynamics in vitro. Cell. Motil. Cytoskeleton 41, 202– 213 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Kennelly, P. J. & Krebs, E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266, 15555– 15558 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Wick, S. Plant microtubules meet their MAPs and mimics. Nature Cell Biol. 2, E204– E206 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Lloyd, C. W. & Hussey, P. J. Microtubule-associated proteins in plants—why we need a MAP. Nature Rev. Mol. Cell Biol. 2, 40– 47 (2001).

    Article  CAS  Google Scholar 

  26. Smertenko, A. et al. A new class of microtubule-associated proteins in plants. Nature Cell Biol. 2, 750– 753 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Wasteneys, G. O., Willingale-Theune, J. & Menzel, D. Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls. J. Microsc. 188, 51– 61 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Konieczny, A. & Ausubel, F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4, 403– 410 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95– 98 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

R. E. Williamson provided support from the inception of this project and supplied EMS-mutagenized seed stock. The Arabidopsis Biological Resource Centre, Ohio State University, supplied BACs. We thank T. Hashimoto and K. Ueda for the GFP::TUA6 line, M. Luo and A. Chaudhury for the binary clone used in complementation, H. Kazama for helpful advice, R. Heady and A. Knox for microscopy assistance, and J. B. Gibson, B. E. S. Gunning and A. R. Hardham for comments on the manuscript. An Australian Research Council QEII Fellowship to G.O.W. supported this work. Coauthor contributions include: mutant identification and genetic analysis (G.O.W. and N.G.H.), gene mapping (O.V., K.-J.W., A.T.W. & G.O.W.), cloning and sequence analysis (A.T.W., K.-J.W., M.C.R. & G.O.W.), microtubule dynamics (G.O.W.) and morphological analysis (K.S., N.G.H. & G.O.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey O. Wasteneys.

Supplementary information

Supplementary gene maps

AtMOR1 nucleotide and deduced amino acid sequences. Splice junctions (><) are shown and exons are numbered from the start codon (underlined). mor1 mutation sites are indicated (Ñ). This RT-PCR-derived sequence data (GenBank AF367246) is slightly different to that predicted (GenBank AC006068.3) due to inaccurate prediction of some splice sites by the latter.

Supplementary gene maps (PDF 269 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittington, A., Vugrek, O., Wei, K. et al. MOR1 is essential for organizing cortical microtubules in plants. Nature 411, 610–613 (2001). https://doi.org/10.1038/35079128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079128

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing