Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-pressure polymorphs of olivine and the 660-km seismic discontinuity

Abstract

It had long been accepted that the 400-km seismic discontinuity in the Earth's mantle results from the phase transition of (Mg,Fe)2-SiO4-olivine to its high-pressure polymorph β-spinel (wadsleyite), and that the 660-km discontinuity results from the breakdown of the higher-pressure polymorph γ-spinel (ringwoodite) to MgSiO3-perovskite and (Mg,Fe)O-magnesiowüstite1,2,3,4. An in situ multi-anvil-press X-ray study5 indicated, however, that the phase boundary of the latter transition occurs at pressures 2 GPa lower than had been found in earlier studies using multi-anvil recovery experiments6 and laser-heated diamond-anvil cells7. Such a lower-pressure phase boundary would be irreconcilable with the accuracy of seismic measurements of the 660-km discontinuity, and would thus require a mineral composition of the mantle that is significantly different from what is currently thought. Here, however, we present measurements made with a laser-heated diamond-anvil cell which indicate that γ-Mg2SiO4 is stable up to pressure and temperature conditions equivalent to 660-km depth in the Earth's mantle (24 GPa and 1,900 K) and then breaks down into MgSiO3-perovskite and MgO (periclase). We paid special attention to pressure accuracy and thermal pressure in our experiments, and to ensuring that our experiments were performed under nearly hydrostatic, inert pressure conditions using a variety of heating methods. We infer that these factors are responsible for the different results obtained in our experiments compared to the in situ multi-anvil-press study5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diamond-cell arrangements used in this study to heat samples of Mg2SiO4-forsterite.
Figure 2: Examples of phase identification by Raman spectroscopy.
Figure 3: Phase diagram of Mg2SiO4.

Similar content being viewed by others

References

  1. Ringwood, A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55, 2083–2110 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Poirier, J. P. in Introduction to the Physics of the Earth's Interior (eds Putnis, A. & Liebermann, R. C. ) 214–226 (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  3. Zhao, Y. & Anderson, D. L. Mineral physics constraints on the chemical composition of the Earth's lower mantle. Phys. Earth Planet. Inter. 85, 273–292 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Navrotsky, A. Physics and Chemistry of Earth Materials (Cambridge Univ. Press, Cambridge, 1994).

    Book  Google Scholar 

  5. Irifune, T. E. A. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science 279, 1698–1700 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Ito, E. & Takahashi, E. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J. Geophys. Res. 94, 10637–10646 (1989).

    Article  ADS  Google Scholar 

  7. Boehler, R. & Chopelas, A. A new approach to laser heating in high pressure mineral physics. Geophys. Res. Lett. 18, 1147–1150 (1991).

    Article  ADS  Google Scholar 

  8. Katsura, T. & Ito, E. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res. 94, 15663–15670 (1989).

    Article  ADS  Google Scholar 

  9. Liu, L. A new high pressure phase of spinel. Earth Planet. Sci. Lett. 41, 398–404 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Kuroda, K. et al. Determination of the phase boundary between ilmenite and perovskite in MgSiO3 by in situ X-ray diffraction and quench experiments. Phys. Chem. Miner. 27, 523–532 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Chopelas, A. Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high-pressure spectroscopic data. Am. Miner. 84, 233–244 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Manghnani, M. H. et al. in Physics of Solids under High Pressure (ed. Schilling, J. S.) 47–55 (North Holland, Amsterdam, 1981).

    Google Scholar 

  13. Heinz, D. L. & Jeanloz, R. The equation of state of the gold calibration standard. J. Appl. Phys. 55, 885–893 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Ming, L. C., Xiong, D. & Manghnani, M. H. Isothermal compression of Au and Al to 20 GPa. Physica B 139, 174–176 (1986).

    Article  Google Scholar 

  15. Anderson, O. L., Isaak, D. G. & Yamamoto, S. Anharmonicity and the equation of state for gold. J. Appl. Phys. 65, 1534–1543 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Getting, I. C. & Kennedy, G. C. Effect of pressure on the emf of chromel-alumel and platinum-platinum 10% rhodium thermocouples. J. Appl. Phys. 41, 4552–4562 (1970).

    Article  ADS  CAS  Google Scholar 

  17. Boehler, R. High-pressure experiments and the phase diagram of lower mantle and core materials. Rev. Geophys. 38, 221–245 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Chopelas, A. The fluorescence sideband method for obtaining acoustic velocities at high compressions: application to MgO and MgAl2O4. Phys. Chem. Miner. 23, 25–37 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Zha, C. S., Mao, H. K. & Hemley, R. J. A primary pressure scale to 55 GPa from new measurements of equation of state and elasticity for MgO. AIRAPT Proc. 136, (1999).

  21. Serghiou, G., Zerr, A., Chudinovskikh, L. & Boehler, R. The coesite-stishovite transition in a laser-heated diamond cell. Geophys. Res. Lett. 22, 441–444 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Shimomura, O., Yamaoka, S., Nakazawa, H. & Fukunaga, O. in High Pressure Research in Geophysics (eds Akimoto, >S. & Manghnani, M. H.) 49–60 (Center for Academic Publishing of Japan, Tokyo, 1982).

    Book  Google Scholar 

  23. Ragan, D. D., Gustavsen, R. & Schiferl, D. Calibration of the ruby R1 and R2 fluorescence shifts as a function of temperature from 0 to 600 K. J. Appl. Phys. 72, 5539–5544 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Datchi, F., Le Toullec, R. & Loubeyre, P. Improved calibration of the SrB4O7:Sm2+ optical pressure gauge: advantages at very high pressures and high temperatures. J. Appl. Phys. 81, 3333–3339 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Yen, J. & Nicol, M. Temperature dependence of the ruby luminescence method for measuring high pressures. J. Appl. Phys. 72, 5535–5538 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Lacam, A. & Chateau, C. The SrB4O7:Sm2+ optical sensor for diamond anvil cells. J. Appl. Phys. 66, 366–370 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Boehler, R. & Zerr, A. Perovskite temperature profile. Science 265, 723 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Boehler, R. Melting and thermal expansion of iron in uniformly laser-heated diamond anvil cells. High Pressure Res. 5, 702–704 (1990).

    Article  ADS  Google Scholar 

  29. Chopelas, A., Boehler, R. & Ko, T. Thermodynamics and behavior of γ-Mg2SiO4 at high pressure: implications for Mg2SiO4 phase equilibrium. Phys. Chem. Mineral. 21, 352–359 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Zerr for assistance with the CO2-laser heating experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Boehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudinovskikh, L., Boehler, R. High-pressure polymorphs of olivine and the 660-km seismic discontinuity. Nature 411, 574–577 (2001). https://doi.org/10.1038/35079060

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079060

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing