Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure

Abstract

Synthetic diamond is formed commercially using high-pressure1, chemical-vapour-deposition2 and shock-wave3 processes, but these approaches have serious limitations owing to low production volumes and high costs. Recently suggested alternative methods of diamond growth include plasma activation4, high pressures5, exotic precursors6,7 or explosive mixtures8, but they suffer from very low yield and are intrinsically limited to small volumes or thin films. Here we report the synthesis of nano- and micro-crystalline diamond-structured carbon, with cubic and hexagonal structure, by extracting silicon from silicon carbide in chlorine-containing gases at ambient pressure and temperatures not exceeding 1,000 °C. The presence of hydrogen in the gas mixture leads to a stable conversion of silicon carbide to diamond-structured carbon with an average crystallite size ranging from 5 to 10 nanometres. The linear reaction kinetics allows transformation to any depth, so that the whole silicon carbide sample can be converted to carbon. Nanocrystalline coatings of diamond-structured carbon produced by this route show promising mechanical properties, with hardness values in excess of 50 GPa and Young's moduli up to 800 GPa. Our approach should be applicable to large-scale production of crystalline diamond-structured carbon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of nano-indentation tests.
Figure 2: High-resolution TEM micrographs showing the structure of the carbon coating within a micrometre of the SiC/carbon interface.
Figure 3: Characterization of crystalline diamond-structured carbon embedded in amorphous carbon.
Figure 4: Microstructure of a carbon film produced in Cl2/H2.

Similar content being viewed by others

References

  1. Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H. Man-made diamonds. Nature 176, 51 (1955).

    Article  ADS  CAS  Google Scholar 

  2. Angus, J. C. & Hayman, C. C. Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 241, 913–921 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Burkhard, G., Dan, K., Tanabe, Y., Sawaoka, A. B. & Yamada, K. Carbon phase transition by dynamic shock compression of a copper/graphite powder mixture. Jpn J. Appl. Phys. 33, L876–L879 (1994).

    Article  ADS  Google Scholar 

  4. Roy, R. et al. New process for 1 atm diamond synthesis: from metallic solutions. Innov. Mater. Res. 1, 65–87 (1996).

    CAS  Google Scholar 

  5. Zhao, X.-Z., Roy, R., Cherian, K. A. & Badzian, A. Hydrothermal growth of diamond in metal-C-H2O systems. Nature 385, 513–515 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Gruen, D. M., Liu, S., Krauss, A. R. & Pan, X. Buckyball microwave plasmas: fragmentation and diamond-film growth. J. Appl. Phys. 75, 1758–1763 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Regueiro, M. N., Monceau, P. & Hodeau, J.-L. Crushing C60 to diamond at room temperature. Nature 355, 237–239 (1992).

    Article  ADS  Google Scholar 

  8. Li, Y. et al. A reduction-pyrolysis-catalysis synthesis of diamond. Science 281, 246–247 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Gogotsi, Y. G. & Yoshimura, M. Formation of carbon films on carbides under hydrothermal conditions. Nature 367, 628–630 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Gogotsi, Y. G., Kofstad, P., Nickel, K. G. & Yoshimura, M. Formation of sp3-bonded carbon upon hydrothermal treatment of SiC. Diamond Relat. Mater. 5, 151–162 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Gogotsi, Y. G., Jeon, J. D. & McNallan, M. J. Carbon coatings on silicon carbide by reaction with chlorine-containing gases. J. Mater. Chem. 7, 1841–1848 (1997).

    Article  CAS  Google Scholar 

  12. Gogotsi, Y. in Proc. NATO ARW on Nanostructured Films and Coatings (eds Chow, G.-M., Ovid’ko, I. A. & Tsakalakos, T.) 25–40 (Kluwer, Dordrecht, 1999).

    Google Scholar 

  13. Gogotsi, Y. G., Nickel, K. G. & Kofstad, P. Hydrothermal synthesis of diamond from diamond-seeded β-SiC powder. J. Mater. Chem. 5, 2313–2314 (1995).

    Article  CAS  Google Scholar 

  14. Silva, S. R. P., Amaratunga, G. A. J., Salje, E. K. H. & Knowles, K. H. Evidence of hexagonal diamond in plasma-deposited carbon films. J. Mater. Sci. 29, 4962–4963 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Zarrabian, M., Fourches-Coulon, N., Turban, G., Marhic, C. & Lancin, M. Observation of nanocrystalline diamond in diamondlike carbon films deposited at room temperature in electron cyclotron resonance plasma. Appl. Phys. Lett. 70, 253–255 (1997).

    Article  Google Scholar 

  16. Hough, R. M. et al. Diamond and silicon carbide in impact melt rock from the Ries impact crater. Nature 378, 41–44 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Rossi, M., Vitali, G., Terranova, M. L. & Sessa, V. Experimental evidence of different crystalline forms in chemical vapour deposited diamond films. Appl. Phys. Lett. 63, 2765–2767 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Kofstad, P. High Temperature Corrosion (Elsevier, London, 1988).

    Google Scholar 

  19. Gruen, D. M. Nanocrystalline diamond films. Annu. Rev. Mater. Sci. 29, 211–259 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Grannen, K. J. & Chang, R. P. H. Diamond growth on carbide surfaces using a selective etching technique. J. Mater. Res. 9, 2154–2163 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Lannon, J. M. J., Gold, J. S. & Stinespring, C. D. Hydrogen ion interactions with silicon carbide and the nucleation of diamond thin films. J. Appl. Phys. 77, 3823–3830 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Heera, V., Skorupa, W., Pecz, B. & Dobos, L. Ion beam synthesis of graphite and diamond in silicon carbide. Appl. Phys. Lett. 76, 2847–2849 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Spitsyn, B. V. in Handbook of Crystal Growth (ed. Hurle, D. T. J.) 401–456 (Elsevier, London, 1994).

    Google Scholar 

  24. Gogotsi, Y. et al. in Proc. NATO ASI on Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology (eds Baraton, M.-I. & Uvarova, I. V.) 239–255 (Kluwer, Dordrecht, 2001).

    Book  Google Scholar 

  25. Wang, J.-T., Cao, C.-B. & Zheng, P.-J. Theoretical aspects of low pressure diamond synthesis. J. Electrochem. Soc. 141, 278–281 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Leung, I., Guo, W., Friedman, I. & Gleason, J. Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian. Nature 346, 352–354 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Daulton, T. L. & Ozima, M. Radiation-induced diamond formation in uranium-rich carbonaceous materials. Science 271, 1260–1262 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Gogotsi, Y. et al. Formation of carbon coatings on SiC fibres by selective etching in halogens and supercritical water. Ceram. Eng. Sci. Proc. 19, 87–94 (1998).

    Article  CAS  Google Scholar 

  29. Kyutt, R. N., Smorgonskaya, E. A., Danishevskii, A. M., Gordeev, S. K. & Grechinskaya, A. V. Structural study of nanoporous carbon produced from polycrystalline carbide materials: small angle X-ray scattering. Phys. Solid State 41, 1359–1363 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Zheng, J., Ekström, T. C., Gordeev, S. K. & Jacob, M. Carbon with an onion-like structure obtained by chlorinating titanium carbide. J. Mater. Chem. 10, 1039–1041 (2000).

    Article  CAS  Google Scholar 

  31. Ersoy, D. A., McNallan, M. J., Gogotsi, Y. & Erdemir, A. Tribological properties of carbon coatings produced by high temperature chlorination of silicon carbide. STLE Tribol. Trans. 43, 809–815 (2000).

    Article  CAS  Google Scholar 

  32. Hirai, H. & Kondo, K.-I. Modified phases of diamond formed under shock compression and rapid quenching. Science 253, 772–774 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Nicholls for discussions and help with TEM analysis. The work done at UIC was supported by the US NSF, and the work done at Drexel University was supported by DARPA via ONR contract. The electron microscopes used in this work are operated by the Research Resources Center at UIC. The JEM-2010F purchase was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Gogotsi.

Supplementary information

Figure 1.

(JPG 12.4 KB)

Convergent-beam electron diffraction (CBED) patterns fromnanocrystals (5-10 nm size) in a sample treated in Ar-3.5% chlorine at1000ºC. The diamond-containing area was within a micrometer from theSiC/carbon interface. a, b, may be attributed to cubic Fd3m or F43mstructures with reflections at 0.206 nm (111) and 0.126 nm (022), as well asforbidden diamond reflections. c,d, may be attributed to hexagonal diamond(lonsdaleite) with reflections at 0.219 (100) and 0.126 nm (110). e, EDSspectrum showing that the analyzed material is nearly pure carbon. Tracesof amorphous silica were present due to oxygen impurity in the gas. Thecopper peak comes from the supporting grid. Other EDS spectra from theanalyzed areas showed even lower content of impurities in carbon.

Figure 2.

(JPG 25.2 KB)

SAD pattern from the nanocrystalline film. Sharp Braggreflections are visible up to the order of (800), indicating good crystallinity.No scattering intensity from either graphite or amorphous carbon can beseen, suggesting that the film is pure diamond, but high intensity of forbiddenreflections suggests a lower symmetry (F&4macr;3m) or impurity superstructure.Sample was sintered α-SiC treated in 2.77% CI2-1.04%H2 (balance Ar) for 5hours at 1000ºC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogotsi, Y., Welz, S., Ersoy, D. et al. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature 411, 283–287 (2001). https://doi.org/10.1038/35077031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35077031

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing