Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-thermal melting in semiconductors measured at femtosecond resolution

Abstract

Ultrafast time-resolved optical spectroscopy has revealed new classes of physical1, chemical2 and biological3 reactions, in which directed, deterministic motions of atoms have a key role. This contrasts with the random, diffusive motion of atoms across activation barriers that typically determines kinetic rates on slower timescales. An example of these new processes is the ultrafast melting of semiconductors, which is believed to arise from a strong modification of the inter-atomic forces owing to laser-induced promotion of a large fraction (10% or more) of the valence electrons to the conduction band1,4,5,6,7,8,9,10,11,12. The atoms immediately begin to move and rapidly gain sufficient kinetic energy to induce melting—much faster than the several picoseconds required to convert the electronic energy into thermal motions13. Here we present measurements of the characteristic melting time of InSb with a recently developed technique of ultrafast time-resolved X-ray diffraction14,15,16,17,18,19 that, in contrast to optical spectroscopy, provides a direct probe of the changing atomic structure. The data establish unambiguously a loss of long-range order up to 900 Å inside the crystal, with time constants as short as 350 femtoseconds. This ability to obtain the quantitative structural characterization of non-thermal processes should find widespread application in the study of ultrafast dynamics in other physical, chemical and biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normalized X-ray diffracted intensity for three different X-ray probing thicknesses as a function of the delay after the exciting laser pulse set at an absorbed laser fluence of 120 mJ cm-2 (130 mJ cm-2 for 3,500 Å (open circles), 119 mJ cm-2 for 1,700 Å (filled circles) and 110 mJ cm-2 for 1,200 Å (open triangles)).
Figure 2: Thickness of the molten layer and duration of the melting process as functions of the absorbed laser fluence (corrected for reflectivity).

Similar content being viewed by others

References

  1. Shank, C. V., Yen, R. & Hirlimann, C. Femtosecond time-resolved surface structural dynamics of optically excited silicon. Phys. Rev. Lett. 51, 900–902 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Zewail, A. H. Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states. J. Phys. Chem. 100, 12701–12724 (1996).

    Article  CAS  Google Scholar 

  3. Vos, M. H. & Martin, J.-L. Femtosecond processes in proteins. Biochim. Biophys. Acta Bioenerget. 1411, 1–20 (1999).

    Article  CAS  Google Scholar 

  4. Wood, R. F., White, C. W. & Young, R. T. (eds) in Pulsed Laser Processing of Semiconductors (Academic, Orlando, 1984).

    Google Scholar 

  5. Shank, C. V., Yen, R. & Hirlimann, C. Time-resolved reflectivity of femtosecond-optical-pulse-induced phase transitions in silicon. Phys. Rev. Lett. 50, 454–520 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Huang, L., Callan, J. P., Glezer, E. N. & Mazur, E. GaAs under intense ultrafast excitation: Response of the dielectric function. Phys. Rev. Lett. 80, 185–188 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Sokolowski-Tinten, K., Bialkowski, J. & von der Linde, D. Ultrafast laser-induced order–disorder transitions in semiconductors. Phys. Rev. B 51, 14186–14198 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Sokolowski-Tinten, K., Schulz, H., Bialkowski, J. & von der Linde, D. Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs. Appl. Phys. A 53, 227–234 (1991).

    Article  ADS  Google Scholar 

  9. Shumay, I. L. & Höfer, U. Phase transformations of an InSb surface induced by strong femtosecond laser pulses. Phys. Rev. B 53, 15878–15884 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Stampfli, P. & Bennemann, K. H. Theory for the laser-induced femtosecond phase transition of silicon and GaAs. Appl. Phys. A 60, 191–196 (1995).

    Article  ADS  Google Scholar 

  11. Silvestrelly, P. L., Alavi, A., Parrinello, M. & Frenkel, D. Ab initio molecular dynamics simulation of laser melting of silicon. Phys. Rev. Lett. 77, 3149–3152 (1996).

    Article  ADS  Google Scholar 

  12. Graves, J. S. & Allen, R. E. Response of GaAs to fast intense laser pulse. Phys Rev. B 58, 13627–13633 (1999).

    Article  ADS  Google Scholar 

  13. Laude, L. D. Cohesive Properties of Semiconductors Under Laser Irradiation. (NATO ASI Series Martinus Nijhoff Vol. 69, The Hague, 1983).

    Book  Google Scholar 

  14. Rischel, C. et al. Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490–492 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Rose-Petruck, C. et al. Picosecond-milliangström lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310–312 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Larsson, J. et al. Ultrafast structural changes measured by time-resolved X-ray diffraction. Appl. Phys. A 66, 587–591 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Chin, A. H. et al. Ultrafast structural dynamics in InSb probed by time-resolved X-ray diffraction. Phys. Rev. Lett. 83, 336–339 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Siders, C. W. et al. Detection of non-thermal melting by ultrafast x-ray diffraction. Science 286, 1340–1342 (1999).

    Article  CAS  Google Scholar 

  19. Lindenberg, A. M. et al. Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition. Phys. Rev. Lett. 84, 111–114 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Phillpot, S. R., Yip, S. & Wolf, D. How do crystals melt ? Comput. Phys. 3, 20–31 (1989).

    Article  ADS  Google Scholar 

  21. Hellwege, K. H. (ed.) in Landolt-Börnstein Semiconductors Vol. 17-a Group IV elements and III-V Compounds (Springer, Berlin, 1991).

    Google Scholar 

  22. Yoffa, E. J. Dynamics of dense laser-induced plasmas. Phys. Rev. B 21, 2415–2425 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Vetelino, J. F., Gaur, S. P. & Mitra, S. S. Debye–Waller factor for zinc-blende-type crystals. Phys. Rev. B 5, 2360–2366 (1971).

    Article  ADS  Google Scholar 

  24. Sokolowski-Tinten, K. et al. Transient states of matter during short laser pulse ablation. Phys. Rev. Lett. 81, 224–227 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Aspnes, D. E. & Studna, A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6 eV. Phys. Rev. B 27, 985–1008 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4137 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Liebl, U. et al. Coherent reaction dynamics in a bacterial cytochrome c oxidase. Nature 401, 181–184 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Pronko, P. P., Dutta, S. K., Du, D. & Singh, R. K. Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses. J. Appl. Phys. 78, 6233–6240 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Hamoniaux, P. Rousseau, K. Ta Phuoc and A. Alexandrou from the Laboratoire d’Optique Appliquée, and T. Moreno from Caminotec Inc, for support; and Veeco Instruments Inc. and A. Semerok from CEA-Saclay for the use of the atomic force microscope (AFM) and the profilers. This work was supported by the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rousse.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousse, A., Rischel, C., Fourmaux, S. et al. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410, 65–68 (2001). https://doi.org/10.1038/35065045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065045

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing