Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental entanglement distillation and ‘hidden’ non-locality

Abstract

Entangled states are central to quantum information processing, including quantum teleportation1, efficient quantum computation2 and quantum cryptography3. In general, these applications work best with pure, maximally entangled quantum states. However, owing to dissipation and decoherence, practically available states are likely to be non-maximally entangled, partially mixed (that is, not pure), or both. To counter this problem, various schemes of entanglement distillation, state purification and concentration have been proposed4,5,6,7,8,9,10,11. Here we demonstrate experimentally the distillation of maximally entangled states from non-maximally entangled inputs. Using partial polarizers, we perform a filtering process to maximize the entanglement of pure polarization-entangled photon pairs generated by spontaneous parametric down-conversion12,13. We have also applied our methods to initial states that are partially mixed. After filtering, the distilled states demonstrate certain non-local correlations, as evidenced by their violation of a form of Bell's inequality14,15. Because the initial states do not have this property, they can be said to possess ‘hidden’ non-locality6,16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up used to investigate entanglement distillation and hidden non-locality.
Figure 2: Experimental results showing entanglement distillation of non-maximally entangled states.
Figure 3: Contour plots in the ε–λ plane, showing the curves for S = 2, for states of the form (2).
Figure 4: Density matrices for states displaying ‘hidden’ non-locality.

Similar content being viewed by others

References

  1. Bennet, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Ekert, A. K. Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Gisin, N. Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151–156 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Horodecki, M., Horodecki, P. & Horodecki, R. Inseparable two spin-1/2 density matrices can be distilled to a singlet form. Phys. Rev. Lett. 78, 574–577 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Linden, N., Massar, S. & Popescu, S. Purifying noisy entanglement requires collective measurements. Phys. Rev. Lett. 81, 3279–3282 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Opatrny, T. & Kurizki, G. Optimization approach to entanglement distillation. Phys. Rev. A 60, 167–172 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Bose, S., Vedral, V. & Knight, P. L. Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Thew, R. T. & Munro, W. J. Entanglement manipulation and concentration. Phys. Rev. A (in the press); also preprint quant-ph/0012049 at 〈xxx.lanl.gov〉 (2000).

  12. Kwiat, P. G., Waks, E., White, A. G., Appelbaum, L. & Eberhard, P. H. Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999).

    Article  ADS  CAS  Google Scholar 

  13. White, A. G., James, D. F. V., Eberhard, P. H. & Kwiat, P. G. Nonmaximally entangled states: Production, characterization, and utilization. Phys. Rev. Lett. 83, 3103–3107 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Bell, J. S. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1965).

    Article  MathSciNet  Google Scholar 

  15. Clauser, J., Horne, M., Shimony, S. & Holt, R. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  16. Popescu, S. Bell's inequalities and density matrices: Revealing ‘hidden’ nonlocality. Phys. Rev. Lett. 74, 2619–2622 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Helstrom, C. W. Quantum Detection and Estimation Theory (Academic, New York, 1976).

  18. Huttner, B. et al. Unambiguous quantum measurement of non-orthogonal states. Phys. Rev. A 54, 3783–3789 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Clark, R. B. M., Chefles, A., Barnett, S. M. & Riis, E. Experimental demonstration of optimal unambiguous state discrimination. Phys. Rev. A (in the press); preprint quant-ph/0007063 at 〈xxx.lanl.gov〉 (2000).

  20. Born, M. & Wolf, E. Principles of Optics 30–32 (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  21. Horodecki, R., Horodecki, P. & Horodecki, M. Violating Bell inequality by mixed spin-1/2 states: Necessary and sufficient condition. Phys. Lett. A 200, 340–344 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Kwiat, P. G., Berglund, A. J., Altepeter, J. B. & White, A. G. Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Berglund, A. J. Quantum Coherence and Control in One- and Two-Photon Optical Systems. Thesis, Dartmouth College B.A. (2000); also preprint quant-ph/0010001 at 〈xxx.lanl.gov〉 (2000).

    Google Scholar 

  24. Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: A new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91–94 (1982).

    Article  ADS  Google Scholar 

  25. Zukowski, M., Horodecki, R., Horodecki, M. & Horodecki, P. Generalized quantum measurements and local realism. Phys. Rev. A 58, 1694–1698 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Bernstein, D. DiVincenzo, B.-G. Englert, L. Hardy, D. James and M. Zukowski for helpful discussions. This work was supported in part by the National Security Agency (NSA) and Advanced Research and Development Activity (ARDA), and by the European IST FET QuComm project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Kwiat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwiat, P., Barraza-Lopez, S., Stefanov, A. et al. Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001). https://doi.org/10.1038/35059017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35059017

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing