Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Eph receptors and neural plasticity

Abstract

Eph receptor tyrosine kinases are largely known for their involvement in brain development but, as some of these receptor tyrosine kinases are also expressed in adults, their possible role in the mature nervous system has begun to be explored. Evidence for the involvement of Eph receptors in synaptic plasticity, learning and memory is only emerging and needs corroboration. However, it is likely that the actions of Eph kinases in the adult brain will attract significant attention and become a fertile research area, as occurred in the case of the neurotrophins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infusion of ephrin-A5–IgG in DBA/2 mice improves behavioural performance.

Similar content being viewed by others

References

  1. Wilkinson, D. G. Multiple roles of Eph receptors and ephrins in neural development. Nature Rev. Neurosci. 2, 155–164 (2001).

    Article  CAS  Google Scholar 

  2. Mellitzer, G., Xu, Q. & Wilkinson, D. G. Control of cell behaviour by signalling through Eph receptors and ephrins. Curr. Opin. Neurobiol. 10, 400–408 (2000).

    Article  CAS  Google Scholar 

  3. Orioli, D. & Klein, R. The Eph receptor family: axonal guidance by contact repulsion. Trends Genet. 13, 354–359 (1997).

    Article  CAS  Google Scholar 

  4. Eph Nomenclature Committee. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell 90, 403–404 (1997).

  5. Davis, S. et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816–819 (1994).

    Article  CAS  Google Scholar 

  6. Meima, L., Kljavin, I. J., Shih, A., Winslow, J. W. & Caras, I. W. AL-1-induced growth cone collapse of rat cortical neurons is correlated with REK7 expression and rearrangement of the actin cytoskeleton. Eur. J. Neurosci. 9, 177– 188 (1997).

    Article  CAS  Google Scholar 

  7. Frisén, J., Holmberg, J. & Barbacid, M. Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J. 18, 5159 –5165 (1999).

    Article  Google Scholar 

  8. Gao, W.-Q. et al. Regulation of hippocampal synaptic plasticity by the tyrosine kinase receptor, REK7/EphA5, and its ligand, AL-1/ephrin-A5. Mol. Cell Neurosci. 11, 247–259 (1998).

    Article  CAS  Google Scholar 

  9. Gerlai, R. et al. Regulation of learning by EphA receptors: a protein targeting study. J. Neurosci. 19, 9538– 9549 (1999).

    Article  CAS  Google Scholar 

  10. Mecteau, M., Moers, S. & Doucet, G. Distribution of EphA3 and EphA4 receptors in the neonatal and adult mouse and rat brain. Soc. Neurosci. Abstr. 218, 8 (2000).

    Google Scholar 

  11. Mamou, B. C., DesGroseillers, L., Chazal, G. & Doucet, G. Distribution of EphA5 and ephrin-A2 in the brain of newborn and adult mouse . Soc. Neurosci. Abstr. 218, 9 (2000).

    Google Scholar 

  12. Torres, R. et al. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21, 1453–1463 (1998).

    Article  CAS  Google Scholar 

  13. Moreno-Flores, M. T. & Wandosell, F. Up-regulation of Eph tyrosine kinase receptors after excitotoxic injury in adult hippocampus . Neuroscience 91, 193– 201 (1999).

    Article  CAS  Google Scholar 

  14. Frisén, J. et al. Ephrin-A5 AL-1/RAGS is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20, 235–243 ( 1998).

    Article  Google Scholar 

  15. Chamow, S. M. & Ashkenazi, A. Immunoadhesins: principles and applications. Trends Biotech. 14, 52– 60 (1996). PubMed

    Article  CAS  Google Scholar 

  16. Winslow, J. W. et al. Cloning of AL-1, a ligand for an eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron 14, 973–981 (1995).

    Article  CAS  Google Scholar 

  17. Gerlai, R. & McNamara, A. Anesthesia induced retrograde amnesia is ameliorated by ephrinA5–IgG in mice: evidence for Eph receptor tyrosine kinase involvement in mammalian memory. Behav. Brain Res. 108, 133–143 (2000).

    Article  CAS  Google Scholar 

  18. Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675– 677 (1992).

    Article  CAS  Google Scholar 

  19. Gerlai, R. A new continuous alternation task in T-maze detects hippocampal dysfunction in mice: a strain comparison and lesion study. Behav. Brain Res. 95, 91–101 ( 1998).

    Article  CAS  Google Scholar 

  20. Gerlai, R. Contextual learning and cue association in fear conditioning in mice: a strain comparison and a lesion study. Behav. Brain Res. 95 , 191–203 (1998).

    Article  CAS  Google Scholar 

  21. Crusio, W. E., Bertholet, J. Y. & Schwegler, H. No correlations between spatial and non-spatial reference memory in a T-maze task and hippocampal mossy fibre distribution in the mouse . Behav. Brain Res. 41, 251– 259 (1990).

    Article  CAS  Google Scholar 

  22. Matsuyama, S., Namgung, U. & Routtenberg, A. Long-term potentiation persistence greater in C57BL/6 than DBA/2 mice: predicted on basis of protein kinase C levels and learning performance. Brain Res. 763, 127– 130 (1997).

    Article  CAS  Google Scholar 

  23. Nguyen, P. V., Duffy, S. N. & Young, J. Z. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. J. Neurophysiol. 84, 2484–2493 (2000).

    Article  CAS  Google Scholar 

  24. Hsueh, Y.-P. & Sheng, M. Eph receptors, ephrins, and PDZs gather in neuronal synapses. Neuron 21, 1227– 1229 (1998).

    Article  CAS  Google Scholar 

  25. Calakos, N. & Scheller, R. H. Synaptic vesicle biogenesis, docking, and fusion: a molecular description. Physiol. Rev. 76, 1–29 (1996).

    Article  CAS  Google Scholar 

  26. Allison, D. W., Gelfand, V. I. & Craig, A. M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423– 2436 (1998).

    Article  CAS  Google Scholar 

  27. Edwards, F. A. LTP — a structural model to explain the inconsistencies. Trends Neurosci. 18, 250–255 (1995).

    Article  CAS  Google Scholar 

  28. Geinisman, Y. et al. Structural synaptic correlate of long-term potentiation: formation of axospinous synapses with multiple, completely partitioned transmission zones. Hippocampus 3, 435– 446 (1993).

    Article  CAS  Google Scholar 

  29. Geinisman, Y., deToledo-Morrell, L. & Morrell, F. Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566, 77– 88 (1991).

    Article  CAS  Google Scholar 

  30. Fifkova, E. & Delay, R. J. Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J. Cell Biol. 95, 345–350 (1982).

    Article  CAS  Google Scholar 

  31. Landis, D. M. & Reese, T. S. Cytoplasmic organization in cerebellar dendritic spines. J. Cell Biol. 97, 1169 –1178 (1983).

    Article  CAS  Google Scholar 

  32. Cohen, R. S., Chung, S. K. & Pfaff, D. W. Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell. Mol. Neurobiol. 5, 271–284 (1985).

    Article  CAS  Google Scholar 

  33. Hayashi, K. et al. Modulatory role of drebrin on the cytoskeleton within dendritic spines in the rat cerebral cortex. J. Neurosci. 16, 7161–7170 (1996).

    Article  CAS  Google Scholar 

  34. Westrum, L. E., Jones, D. H., Gray, E. G. & Barron, J. Microtubules, dendritic spines and spine apparatuses. Cell Tissue Res. 208, 171–181 ( 1980).

    Article  CAS  Google Scholar 

  35. Kim, C. H. & Lisman, J. E. A role of actin filaments in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).

    Article  CAS  Google Scholar 

  36. Zisch, A. H. et al. Tyrosine phosphorylation of L1 family adhesion molecules: implication of the Eph kinase Cek5. J. Neurosci. Res. 47, 655–665 (1997).

    Article  CAS  Google Scholar 

  37. Luthl, A., Laurent, J. P., Figurov, A., Muller, D. & Schachner, M. Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372, 777–779 (1994).

    Article  CAS  Google Scholar 

  38. Davy, A. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 13 , 3125–3135 (1999).

    Article  CAS  Google Scholar 

  39. Murase, S. & Schuman, E. M. The role of cell adhesion molecules in synaptic plasticity and memory. Curr. Opin. Cell Biol. 11, 549–553 (1999).

    Article  CAS  Google Scholar 

  40. Ellis, C. et al. A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 12, 1727–1736 ( 1996).

    CAS  PubMed  Google Scholar 

  41. Grant, S. G. Analysis of NMDA receptor mediated synaptic plasticity using gene targeting: roles of Fyn and FAK non-receptor tyrosine kinases. J. Physiol. (Paris) 90, 337–338 ( 1996).

    Article  CAS  Google Scholar 

  42. Grant, S. G. N. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910 (1992).

    Article  CAS  Google Scholar 

  43. Yu, X.-M., Askalan, R., Keil, G. J. & Salter, M. W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275, 674–678 ( 1997).

    Article  CAS  Google Scholar 

  44. Lu, Y. M., Roder, J. C., Davidow, J. & Salter, M. W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363– 1367 (1998).

    Article  CAS  Google Scholar 

  45. Dalva, M. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945– 956 (2000).

    Article  CAS  Google Scholar 

  46. Brückner, K. & Klein, R. Signaling by Eph receptors and their ephrin ligands. Curr. Opin. Neurobiol. 8, 375–382 (1998).

    Article  Google Scholar 

  47. Miranda, J. D. et al. Induction of Eph B3 after spinal cord injury. Exp. Neurol. 156, 218–222 (1999).

    Article  CAS  Google Scholar 

  48. Yue, Y. et al. Selective inhibition of spinal cord neurite outgrowth and cell survival by the Eph family ligand ephrin-A5. J. Neurosci. 19, 10026–10035 (1999).

    Article  CAS  Google Scholar 

  49. Rodger, J., Bartlett, C. A., Beazley, L. D. & Dunlop, S. A. Transient up-regulation of the rostrocaudal gradient of ephrin A2 in the tectum coincides with reestablishment of orderly projections during optic nerve regeneration in goldfish. Exp. Neurol. 166, 196– 200 (2000).

    Article  CAS  Google Scholar 

  50. Becker, C. G. & Becker, T. Gradients of ephrin-A2 and ephrin-A5b mRNA during retinotopic regeneration of the optic projection in adult zebrafish . J. Comp. Neurol. 427, 469– 483 (2000).

    Article  CAS  Google Scholar 

  51. Conover, J. C. et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nature Neurosci. 3, 1091–1097 (2000).

    Article  CAS  Google Scholar 

  52. Gerlai, R. Gene targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci. 19, 177– 181 (1996).

    Article  CAS  Google Scholar 

  53. Gerlai, R. Protein targeting: altering receptor kinase function in the brain. Trends Neurosci. 23, 236–239 (2000).

    Article  CAS  Google Scholar 

  54. Poo, M.-M. Neurotrophins as synaptic modulators. Nature Rev. Neurosci. 2, 24–32 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

LINK

The International Behavioural and Neural Genetics Society

DATABASE LINKS

Eph receptors

ephrins

EphA5

ephrin-A5

ephrin-A2

EphA3

EphA4

EphB2

MAP2

L1

Src

Fyn

ENCYCLOPEDIA OF LIFE SCIENCES

Ephrins

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlai, R. Eph receptors and neural plasticity. Nat Rev Neurosci 2, 205–209 (2001). https://doi.org/10.1038/35058582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35058582

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing