Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Parallel adaptive radiations in two major clades of placental mammals

Abstract

Higher level relationships among placental mammals, as well as the historical biogeography and morphological diversification of this group, remain unclear1,2,3. Here we analyse independent molecular data sets, having aligned lengths of DNA of 5,708 and 2,947 base pairs, respectively, for all orders of placental mammals. Phylogenetic analyses resolve placental orders into four groups: Xenarthra, Afrotheria, Laurasiatheria, and Euarchonta plus Glires. The first three groups are consistently monophyletic with different methods of analysis. Euarchonta plus Glires is monophyletic or paraphyletic depending on the phylogenetic method. A unique nine-base-pair deletion in exon 11 of the BRCA1 gene provides additional support for the monophyly of Afrotheria, which includes proboscideans, sirenians, hyracoids, tubulidentates, macroscelideans, chrysochlorids and tenrecids. Laurasiatheria contains cetartiodactyls, perissodactyls, carnivores, pangolins, bats and eulipotyphlan insectivores. Parallel adaptive radiations have occurred within Laurasiatheria and Afrotheria. In each group, there are aquatic, ungulate and insectivore-like forms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rooted maximum-likelihood trees.
Figure 2

Similar content being viewed by others

References

  1. Novacek, M. J. Mammalian phylogeny: shaking the tree. Nature 356, 121–125 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Shoshani, J. & McKenna, M. C. Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol. Phylogenet. Evol. 9, 572–584 (1998).

    Article  CAS  Google Scholar 

  3. de Jong, W. W. Molecules remodel the mammalian tree. Trends Ecol. Evol. 13, 270–275 (1998).

    Article  CAS  Google Scholar 

  4. Springer, M. S., Burk, A., Kavanagh, J. R., Waddell, V. G. & Stanhope, M. J. The interphotoreceptor retinoid binding protein gene in therian mammals: implications for higher level relationships and evidence for loss of function in the marsupial mole. Proc. Natl Acad. Sci. USA 94, 13754–13759 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Springer, M. S. et al. Endemic African mammals shake the phylogenetic tree. Nature 388, 61–64 (1997).

    Article  CAS  Google Scholar 

  6. Stanhope, M. J. et al. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc. Natl Acad. Sci. USA 95, 9967–9972 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Teeling, E. C. et al. Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403, 188–192 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Asher, R. J. A morphological basis for assessing the phylogeny of the ‘Tenrecoidea’ (Mammalia, Lipotyphla). Cladistics 15, 231–252 (1999).

    Google Scholar 

  9. Luckett, W. P. & Hartenberger, J.-L. Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations. J. Mammal. Evol. 1, 127–147 (1993).

    Article  Google Scholar 

  10. Waddell, P. J., Cao, Y., Hauf, J. & Hasegawa, M. Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-logdet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo and elephant. Syst. Biol. 48, 31–53 (1999).

    Article  CAS  Google Scholar 

  11. Penny, D., Masegawa, M., Waddell, P. J. & Hendy, M. D. Mammalian evolution: Timing and implications from using the logdeterminant transform for proteins of differing amino acid composition. Syst. Biol. 48, 76–93 (1999).

    Article  CAS  Google Scholar 

  12. McKenna, M. C. & Bell, S. K. Classification of Mammals Above the Species Level (Columbia Univ. Press, New York, 1997).

    Google Scholar 

  13. Rainger, R. Agenda for Antiquity: Henry Fairfield Osborn and Vertebrate Paleontology at the American Museum of Natural History, 1890–1935 (Univ. Alabama Press, Tuscaloosa, Alabama, 1991).

    Google Scholar 

  14. Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Foote, M., Hunter, J. P., Janis, C. M. & Sepkoski, J. J. Jr Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283, 1310–1314 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Rich, T. H. et al. A tribosphenic mammal from the Mesozoic of Australia. Science 278, 1438–1442 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Mouchaty, S. K., Gullberg, A., Janke, A. & Arnason, U. The phylogenetic position of the Talpidae within Eutheria based on analysis of complete mitochondrial sequences. Mol. Biol. Evol. 17, 60–67 (2000).

    Article  CAS  Google Scholar 

  18. Waddell, P. J., Okada, N. & Hasegawa, M. Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48, 1–5 (1999).

    Article  CAS  Google Scholar 

  19. Rasmussen, D. T. in The Evolution of Perissodactyls (eds Prothero, D. R. & Schoch, R. M.) 57–78 (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  20. Matthew, W. D. The Carnivora and Insectivora of the Bridger basin, middle Eocene. Mem. Am. Nat. Hist. 9, 291–567 (1909).

    Google Scholar 

  21. Novacek, M. J. The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183, 1–111 (1986).

    Google Scholar 

  22. Easteal, S. Molecular evidence for the early divergence of placental mammals. BioEssays 21, 1052–1058 (1999).

    Article  CAS  Google Scholar 

  23. Thompson, J. D., Higgins, G. D. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  24. Swofford, D. L., Olsen, G. P., Waddell, P. J. & Hillis, D. M. in Molecular Systematics (eds Hillis, D. M., Moritz, C. & Mable, B. K.) 407–492 (Sinauer, Sunderland, Massachusetts, 1996).

    Google Scholar 

  25. Krajewski, C., Blacket, M., Buckley, L. & Westerman, M. A multigene assessment of phylogenetic relationships within the dasyurid marsupial subfamily Sminthopsinae. Mol. Phylogenet. Evol. 8, 236–248 (1997).

    Article  CAS  Google Scholar 

  26. Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods) Version 4, (Sinauer, Sunderland, Massachusetts, 1998).

  27. Rambaut, A. & Grassly, N. C. Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13, 303–306 (1997).

    CAS  PubMed  Google Scholar 

  28. Rambaut, A. & Bromham, L. Estimating divergence dates from molecular sequences. Mol. Biol. Evol. 15, 442–448 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Catzeflis for tissue samples. This work was supported by the NSF (M.S.S.) and the TMR program of the European Commission (W.W.d.J.; M.J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Springer.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madsen, O., Scally, M., Douady, C. et al. Parallel adaptive radiations in two major clades of placental mammals. Nature 409, 610–614 (2001). https://doi.org/10.1038/35054544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35054544

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing