Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the transcription activator BmrR bound to DNA and a drug

Abstract

The efflux of chemically diverse drugs by multidrug transporters that span the membrane1 is one mechanism of multidrug resistance in bacteria. The concentrations of many of these transporters are controlled by transcription regulators, such as BmrR in Bacillus subtilis2, EmrR in Escherichia coli3 and QacR in Staphylococcus aureus 4. These proteins promote transporter gene expression when they bind toxic compounds. BmrR activates transcription of the multidrug transporter gene, bmr, in response to cellular invasion by certain lipophilic cationic compounds (drugs)2,5,6. BmrR belongs to the MerR family, which regulates response to stress such as exposure to toxic compounds or oxygen radicals in bacteria7,8,9,10,11,12. MerR proteins have homologous amino-terminal DNA-binding domains but different carboxy-terminal domains, which enable them to bind specific ‘coactivator’ molecules. When bound to coactivator, MerR proteins upregulate transcription by reconfiguring the 19-base-pair spacer found between the -35 and -10 promoter elements to allow productive interaction with RNA polymerase7,9,10,11,12. Here we report the 3.0 Å resolution structure of BmrR in complex with the drug tetraphenylphosphonium (TPP) and a 22-base-pair oligodeoxynucleotide encompassing the bmr promoter. The structure reveals an unexpected mechanism for transcription activation that involves localized base-pair breaking, and base sliding and realignment of the -35 and -10 operator elements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the BmrR–drug–DNA complex.
Figure 2: BmrR–DNA interactions.
Figure 3: bmr promoter.

Similar content being viewed by others

References

  1. Saier, M. H. Jr et al. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J. 12, 265– 274 (1998).

    Article  CAS  Google Scholar 

  2. Ahmed, M., Borsch, C. M., Taylor, S. S., Vazques-Laslop, N. & Neyfakh, A. A. A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates. J. Biol. Chem. 269, 28506– 28513 (1994).

    CAS  PubMed  Google Scholar 

  3. Brooun, A., Tomashek, J. J. & Lewis, K. Purification and ligand binding of EmrR, a regulator of a multidrug transporter. J. Bacteriol. 181, 5131–5133 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Grkovic, S., Brown, M. H., Roberts, N. J., Paulsen, I. T. & Skurray, R. A. QacR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug efflux pump QacA. J. Biol. Chem. 273, 18665– 18673 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Markham, P. N., LoGuidice, J. & Neyfakh, A. A. Broad ligand specificity of the transcriptional regulator of the Bacillus subtilis multidrug transporter Bmr. Biochem. Biophys. Res. Commun. 239, 269–272 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Vazquez-Laslop, N., Markham, P. N. & Neyfakh, A. A. Mechanism of ligand recognition by BmrR, the multidrug-responding transcriptional regulator: mutational analysis of the ligand-binding site. Biochemistry 38, 16925– 16931 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Summers, A. O. Untwist and shout: a heavy metal-responsive transcriptional regulator. J. Bacteriol. 174, 3097–3101 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holmes, D. J., Caso, J. L. & Thompson, C. J. Autogenous transcriptional activation of a thiostrepton-induced gene in Streptomyces lividans. EMBO J. 12, 3183–3191 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ansari, A. Z., Bradner, J. E. & O′Halloran, T. V. DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374, 371– 375 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Gaudu, P. & Weiss, B. SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form. Proc. Natl Acad. Sci. USA. 93, 10094–10098 ( 1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hidalgo, E., Ding, H. & Demple, B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem. Sci. 22, 207–210 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Outten, C. E., Outten, F. W. & O′Halloran, T. V. DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli . J. Biol. Chem. 274, 37517– 37524 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Gajiwala, K. S. & Burley, S. K. Winged helix proteins. Curr. Opin. Struct. Biol. 10, 110–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Zheleznova, E. E., Markham, P. N., Neyfakh, A. A. & Brennan, R. G. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96, 353 –362 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Honig, B. & Nicholls, A. Classical electrostatics in biology and chemistry. Science 268, 1144– 1149 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Caguiat, J. J., Watson, A. L. & Summers, A. O. Cd(ii)-responsive and constitutive mutants implicate a novel domain in MerR. J. Bacteriol. 181 , 3462–3471 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lavery, R. & Sklenar, H. Defining the structure of irregular nucleic acids: conventions and principles. J. Biomol. Struct. Dyn. 6, 655–667 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  18. Parkhill, J. & Brown, N. L. Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Res. 18, 5157– 5162 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hidalgo, E. & Demple, B. Spacing of promoter elements regulates the basal expression of the soxS gene and converts SoxR from a transcriptional activator into a repressor. EMBO J. 16, 1056–1065 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Comess, K. M., Shewchuk, L. M., Ivanetich, K. & Walsh, C. T. Construction of a synthetic gene for the metalloregulatory protein MerR and analysis of regionally mutated proteins for transcriptional regulation. Biochemistry 33, 4175–4186 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Zeng, Q., Stalhandske, C., Anderson, M. C., Scott, R. A. & Summers, A. O. The core metal-recognition domain of MerR. Biochemistry 37, 15885– 15895 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Bradley, T. M., Hidalgo, E., Leautaud, V., Ding, H. & Demple, B. Cysteine-to-alanine replacements in the Escherichia coli SoxR protein and the role of the [2Fe-2S] centers in transcriptional activation. Nucleic Acids Res. 25 , 1469–1475 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kissinger, C. R., Gehlhaar, D. K. & Fogel, D. B. Rapid automated molecular replacement by evolutionary search. Acta Crystallogr. D 55, 484– 491 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Furey, W. & Swaminathan, S. PHASES-95: a program package for the processing and analysis of diffraction data from macromolecules. Methods Enzymol. 277B, 590–620 (1997).

    Article  Google Scholar 

  25. Jones, T. Z., Zou, J. -Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  26. Brünger, A. T. Free R value: cross-validation in crystallography. Methods Enzymol. 277B, 366–396 ( 1997).

    Article  Google Scholar 

  27. Tronrud, D. E. TNT refinement package. Methods Enzymol. 277B, 306–319 (1997).

    Article  Google Scholar 

  28. Laskowski, R. A., MacArthur, M. W. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  29. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank P. N. Markham and A. A. Neyfakh for providing the bmrR expression construct and for helpful comments. This research was supported by the NSF, NIH and the Medical Research Foundation of Oregon (R.G.B.) and the American Heart Association (E.E.Z.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Brennan.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heldwein, E., Brennan, R. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409, 378–382 (2001). https://doi.org/10.1038/35053138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35053138

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing