Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

X-ray clusters of galaxies as tracers of structure in the Universe

Abstract

Clusters of galaxies are visible tracers of the network of matter in the Universe, marking the high-density regions where filaments of dark matter join together. When observed at X-ray wavelengths these clusters shine like cosmic lighthouses, as a consequence of the hot gas trapped within their gravitational potential wells. The X-ray emission is linked directly to the total mass of a cluster, and so can be used to investigate the mass distribution for a sizeable fraction of the Universe. The picture that has emerged from recent studies is remarkably consistent with the predictions for a low-density Universe dominated by cold dark matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maps of the cosmic web.
Figure 2: Statistical description of clustering.
Figure 3: The power spectrum of the distribution of galaxies and X-ray clusters of galaxies from the data of Fig. 1.
Figure 4: The visual and X-ray appearance of the rich galaxy cluster RXCJ1206.2-0848 at redshift z = 0.44, discovered by the REFLEX survey30.
Figure 5: Correlations between mass and observational properties of galaxy clusters.
Figure 6: The evolution of gravitational clustering simulated using an N-body code for two different models.

Similar content being viewed by others

References

  1. Abell, G. O. The distribution of rich clusters of galaxies. Astrophys. J. Suppl. 3, 211–278 ( 1958).

    Article  ADS  Google Scholar 

  2. Abell, G. O., Corwin, H. G. Jr & Olowin, R. P. A catalog of rich clusters of galaxies. Astrophys. J. Suppl. 70, 1– 138 (1989).

    Article  ADS  Google Scholar 

  3. Zwicky, F., Herzog, E., Wild, P., Karpowicz, M. & Kowal, C. Catalogue of Galaxies and of Clusters of Galaxies (California Institute of Technology, Pasadena, 1961–68 ).

    Google Scholar 

  4. Retzlaff, J., Borgani, S., Gottlöber, S., Klypin, A. & Müller, V. Constraining cosmological models with cluster power spectra. New Astron. 3, 631–646 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Miller, C. J. & Batuski, D. J. The power spectrum of rich clusters to scales approaching 1000 Mpc. Astrophys. J. (submitted); also preprint astro-ph/0002295 at 〈xxx.lanl.gov〉 ( 2000).

  6. Zwicky, F. Helv. Phys. Acta. 6, 110 (1933 ).

    ADS  Google Scholar 

  7. Smith, S. The mass of the Virgo cluster. Astrophys. J. 83, 23–30 (1936).

    Article  ADS  Google Scholar 

  8. Evrard, A. E. The intracluster gas fraction in X-ray clusters—Constraints on the clustered mass density. Mon. Not. R. Astron. Soc. 292, 289–297 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Hasinger, G. et al. The ROSAT Deep Survey. I. X-ray sources in the Lockman Field. Astron. Astrophys. 329, 482– 494 (1998).

    ADS  CAS  Google Scholar 

  10. Ebeling, H. et al. Properties of the X-ray-brightest Abell-type clusters of galaxies (XBACs) from ROSAT All-Sky Survey data—I. The sample. Mon. Not. R. Astron. Soc. 281, 799–829 (1996).

    Article  ADS  Google Scholar 

  11. Ebeling, H. et al. The ROSAT brightest cluster sample—I. The compilation of the sample and the cluster log N-log S distribution. Mon. Not. R. Astron. Soc. 301, 881–914 (1998).

    Article  ADS  CAS  Google Scholar 

  12. De Grandi, S. et al. (the REFLEX Team) A flux-limited sample of bright clusters of galaxies from the southern part of the ROSAT All-Sky Survey: The catalog and LOG N-log S. Astrophys. J. 514, 148– 163 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Böhringer, H. et al. (the REFLEX Team) The ROSAT-ESO flux limited X-ray (REFLEX) galaxy cluster sample. Astron. Astrophys. (submitted); also as preprint astro-ph/001226 at 〈xxx.lanl.gov〉 ( 2000).

  14. Böhringer, H. et al. The northern ROSAT All-Sky (NORAS) galaxy cluster survey I: X-ray properties of clusters detected as extended X-ray sources. Astrophys. J. Suppl. 129, 435–474 (2000).

    Article  ADS  Google Scholar 

  15. de Bernardis, P. et al. (BOOMERANG Collaboration) A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Balbi, A. et al. (MAXIMA Collaboration) Constraints on cosmological parameters from MAXIMA-1. Astrophys. J. 545, L1– L4 (2000).

    Article  ADS  Google Scholar 

  17. Rood, H. J. Voids. Annu. Rev. Astron. Astrophys. 26, 245–294 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Guzzo, L. in Proceedings of the XIX Texas Symposium on Relativistic Astrophysics & Cosmology (eds Aubourg, E. et al.) Nucl. Phys. B (Proc. Suppl.) 80, 241 (09/06) (2000 ); also preprint astro-ph/9911115 at 〈xxx.lanl.gov〉 ( 1999).

    Google Scholar 

  19. Shectman, S. A. et al. The Las Campanas Redshift Survey. Astrophys. J. 470, 172–188 ( 1996).

    Article  ADS  Google Scholar 

  20. Peebles, P. J. E. Principles of Physical Cosmology (Princeton University Press, Princeton, 1993).

    Google Scholar 

  21. Tucker, D. L. et al. The Las Campanas redshift survey galaxy–galaxy autocorrelation function. Mon. Not. R. Astron. Soc. 285, L5–L9 (1997).

    Article  ADS  Google Scholar 

  22. Borgani, S. Scaling in the Universe. Phys. Rep. 251, 1–152 (1995).

    Article  ADS  Google Scholar 

  23. Guzzo, L. Is the Universe homogeneous? (on large scales). New Astron. 2, 517–532 (1997).

    Article  ADS  Google Scholar 

  24. Wu, K., Lahav, O. & Rees, M. J. The large-scale smoothness of the Universe. Nature 397, 225–230 ( 1999).

    Article  ADS  CAS  Google Scholar 

  25. Peacock, J. A. Cosmological Physics (Cambridge University Press, Cambridge, 1999).

    MATH  Google Scholar 

  26. Coles, P. & Lucchin, F. Cosmology: The Origin and Evolution of Cosmic Structure (Wiley, Chichester, 1995).

    MATH  Google Scholar 

  27. Mo, H. J. & White, S. D. M. An analytic model for the spatial clustering of dark matter haloes. Mon. Not. R. Astron. Soc. 282, 347–361 (1996).

    Article  ADS  Google Scholar 

  28. Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation: the local Universe. Mon. Not. R. Astron. Soc. 310, 1087–1110 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Benson, A. J., Cole, S., Frenk, C. S., Bough, C. M. & Lacey, C. G. The nature of galaxy bias and clustering. Mon. Not. R. Astron. Soc. 311, 793– 808 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Guzzo, L. et al. (the REFLEX Team) The REFLEX cluster survey: observing strategy and first results on large-scale structure. The Messenger 95, 27–32 (1999).

    ADS  Google Scholar 

  31. Collins, C. A. et al. (the REFLEX Team) The REFLEX galaxy cluster survey II. The spatial correlation function. Mon. Not. R. Astron. Soc. 319, 939–948 (2000).

    Article  ADS  Google Scholar 

  32. Schuecker, P. et al. (the REFLEX Team) The REFLEX galaxy cluster survey II. The spatial correlation function. Mon. Not. R. Astron. Soc. (in the press); also preprint astro-ph/0012105 at 〈xxx.lanl.gov〉 (2000).

  33. Bahcall, N. A. & Soneira, R. M. The spatial correlation function of rich clusters of galaxies. Astrophys. J. 270, 20–38 ( 1983).

    Article  ADS  Google Scholar 

  34. Klypin, A. A. & Kopylov, A. I. The spatial covariance function for rich clusters of galaxies. Sov. Astron. Lett. 9 , 41–44 (1983).

    ADS  Google Scholar 

  35. Postman, M. in Evolution of Large-Scale Structure: from Recombination to Garching (eds Banday A. J., Sheth, K. & da Costa, L. N.) 270 (Print Partners Ipskamp. Enschede,, 1999).

    Google Scholar 

  36. Kaiser, N. On the spatial correlations of Abell clusters. Astrophys. J. 284, L9–L12 (1984).

    Article  ADS  Google Scholar 

  37. Lumsden, S. L., Nichol, R. C., Collins, C. A. & Guzzo, L. The Edinburgh-Durham southern galaxy catalogue. IV—The cluster catalogue. Mon. Not. R. Astron. Soc. 258, 1– 22 (1992).

    Article  ADS  Google Scholar 

  38. Eke, V. R., Cole, S., Frenk, C. S. & Navarro, J. F. Cluster correlation functions in N-body simulations. Mon. Not. R. Astron. Soc. 281, 703–715 (1996).

    Article  ADS  Google Scholar 

  39. Kellogg, E. et al. X-ray observations of the Virgo cluster, NGC 5128, and 3C 273 from the UHURU satellite. Astrophys. J. 165, L49–L52 (1971).

    Article  ADS  Google Scholar 

  40. Gursky, H. et al. A strong X-ray source in the Coma cluster observed by UHURU. Astrophys. J. 167, L81– L84 (1971).

    Article  ADS  Google Scholar 

  41. Giacconi, R. et al. The third UHURU catalog of X-ray sources. Astrophys. J. Suppl. 27, 37–64 ( 1974).

    Article  ADS  Google Scholar 

  42. Cavaliere, A., Gursky, H. & Tucker, W. H. Extragalactic X-ray sources and associations of galaxies. Nature 231, 437–438 (1971).

    Article  ADS  Google Scholar 

  43. Sarazin, C. X-ray Emission from Clusters of Galaxies (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  44. Reiprich, T. H. & Böhringer, H. The empirical X-ray luminosity-gravitational mass relation for clusters of galaxies. Astron. Nachr. 320, 296–299 (1999).

    Article  ADS  Google Scholar 

  45. Evrard, A. E., Metzler, C. A. & Navarro, J. F. Mass estimates of X-ray clusters. Astrophys. J. 469, 494–507 ( 1996).

    Article  ADS  CAS  Google Scholar 

  46. Bryan, G. L. & Norman, M. L. Statistical properties of X-ray clusters: Analytic and numerical comparisons. Astrophys. J. 495, 80–99 (1998).

    Article  ADS  Google Scholar 

  47. White, D. A., Jones, C. & Forman, W. An investigation of cooling flows and general cluster properties from an X-ray image deprojection analysis of 207 clusters of galaxies. Mon. Not. R. Astron. Soc. 292, 419– 467 (1997).

    Article  ADS  Google Scholar 

  48. Arnaud, M. & Evrard, A. E. The L X - T relation and intracluster gas fractions of X-ray clusters. Mon. Not. R. Astron. Soc. 305, 631– 640 (1999).

    Article  ADS  Google Scholar 

  49. Mushotzky, R. F. & Scharf, C. F. The luminosity-temperature relation at z = 0.4 for clusters of galaxies. Astrophys. J. 482, L13–L16 ( 1997).

    Article  ADS  Google Scholar 

  50. Della Ceca, R. et al. BeppoSAX observations of two high redshift clusters of galaxies: RXJ 0152.7-1357 and MS 2053.7-0449. Astron. Astrophys. 353, 498–506 (2000).

    ADS  CAS  Google Scholar 

  51. Henry, P. Measuring cosmological parameters from the evolution of cluster X-ray temperatures. Astrophys. J. 534, 565– 580 (2000).

    Article  ADS  Google Scholar 

  52. Tozzi, P. & Norman, C. The evolution of X-ray clusters and the entropy of the intra cluster medium. Astrophys. J. (in the press); also preprint-astro-ph/0003289 at 〈xxx.lanl.gov〉 (2000).

  53. Bower, R. G. et al. The impact of galaxy formation on the X-ray evolution of clusters. Mon. Not. R. Astron. Soc. (submitted); also preprint astro-ph/0006109 at 〈xxx.lanl.gov〉 (2000).

  54. Bartlett, J. G. Sunyaev-Zel'dovich surveys: Analytic treatment of cluster detection. Astron. Astrophys. (in the press); also preprint astro-ph/0001267 at 〈xxx.lanl.gov〉 (2000).

  55. Lahav, O., Edge, A. C., Fabian, A. C. & Putney, A. The spatial distribution of X-ray clusters of galaxies. Mon. Not. R. Astron. Soc. 238, 881–895 (1989).

    Article  ADS  Google Scholar 

  56. Voges, W. in Röntgenstrahlung from the Universe (eds Zimmermann, H. U., Trümper, J. E. & Yorke, H.) 637 (MPE Report No. 263, Max-Planck Institut für Extraterrestrische Physik, Garching bei München, 1996).

    Google Scholar 

  57. Romer, A. K. et al. The large-scale distribution of X-ray clusters of galaxies. Nature 372, 75–77 (1994).

    Article  ADS  CAS  Google Scholar 

  58. Nichol, R. C., Briel, O. G. & Henry, J. P. The spatial correlation function from an X-ray selected sample of Abell clusters. Mon. Not. R. Astron. Soc. 267, 771–778 (1994).

    Article  ADS  Google Scholar 

  59. Borgani, S., Plionis, M. & Kolokotronis, V. Cosmological constraints from the clustering properties of the X-ray brightest Abell-type cluster sample. Mon. Not. R. Astron. Soc. 305, 866–874 (1999).

    Article  ADS  Google Scholar 

  60. Moscardini, L., Matarrese, S., De Grandi, S. & Lucchin, F. The correlation function of X-ray galaxy clusters in the ROSAT All-Sky Survey 1 bright sample. Mon. Not. R. Astron. Soc. 314, 647–656 (2000).

    Article  ADS  Google Scholar 

  61. Sheth, R. K., Mo, H. J. & Tormen, G. Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. Mon. Not. R. Astron. Soc. (submitted); also preprint astro-ph/9907024 at 〈xxx.lanl.gov〉 (1999).

  62. Governato, F. et al. Properties of galaxy clusters: mass and correlation functions. Mon. Not. R. Astron. Soc. 307, 949– 966 (1999).

    Article  ADS  Google Scholar 

  63. Colberg, J. M. et al. Clustering of galaxy clusters in cold dark matter universes. Mon. Not. R. Astron. Soc. 319, 209– 214 (2000).

    Article  ADS  CAS  Google Scholar 

  64. Górski, K. M. et al. Power spectrum of primordial inhomogeneity determined from the four-year COBE DMR sky maps. Astrophys. J. 464, L11–L14 (1996).

    Article  ADS  Google Scholar 

  65. Bahcall, N. A., Ostriker, J. P., Perlmutter, S. & Steinhardt, P. J. The cosmic triangle: revealing the state of the Universe. Science 284, 1481–1488 ( 1999).

    Article  ADS  CAS  Google Scholar 

  66. Rosati, P. et al. in Large Scale Structure in the X-ray Universe (eds Plionis M. & Georgantopoulos, I.) 13–20 (Atlantisciences, Paris, 2000).

    Google Scholar 

  67. Gioia, I. in Proc. IAP2000 Conf. “Constructing the Universe with Clusters of Galaxies” (eds Gerbal, G. & Durret, F.) (in the press); also preprint astro-ph/0010059 at 〈xxx.lanl.gov〉 (2000).

    Google Scholar 

  68. Rosati, P. et al. An X-ray selected galaxy cluster at z = 1.26. Astron. J. 118, 76–85 ( 1999).

    Article  ADS  CAS  Google Scholar 

  69. Suto, Y., Yamamoto, K., Kitayama, T. & Jing, Y. P. Two-point correlation functions of X-ray-selected clusters of galaxies: Theoretical predictions for flux-limited surveys. Astrophys. J. 534, 551–558 (2000).

    Article  ADS  Google Scholar 

  70. Moscardini, L., Matarrese, S., Lucchin, F. & Rosati, P. Predicting the clustering of X-ray selected galaxy clusters in flux-limited surveys. Mon. Not. R. Astron. Soc. 316, 283–298 (2000).

    Article  ADS  Google Scholar 

  71. Burrows, C. J., Burg, R. & Giacconi, R. Optimal grazing incidence optics and its application to wide-field X-ray imaging. Astrophys. J. 392, 760–765 (1992).

    Article  ADS  Google Scholar 

  72. Eisenstein, D. J. & Hu, P. Baryonic features in the matter transfer function. Astrophys. J. 496, 605–614 (1998).

    Article  ADS  CAS  Google Scholar 

  73. Eke, V. R., Cole, S. & Fenk, C. S. Cluster evolution as a diagnostic for Ω. Mon. Not. R. Astron. Soc. 282, 263– 280 (1996).

    Article  ADS  Google Scholar 

  74. Girardi, M., Borgani, S., Giuricin, G., Mardirossian, F. & Mezzetti, M. The observational mass function of nearby galaxy clusters. Astrophys. J. 506, 45–52 (1998).

    Article  ADS  Google Scholar 

  75. Viana, P. T. P. & Liddle, A. R. Galaxy clusters at 0.3 < z < 0.4 and the value of Ω0. Mon. Not. R. Astron. Soc. 303, 535– 545 (1999).

    Article  ADS  Google Scholar 

  76. Borgani, S., Rosati, P., Tozzi, P. & Norman, G. Cosmological constraints from the ROSAT deep cluster survey. Astrophys. J. 517 , 40–53 (1999).

    Article  ADS  Google Scholar 

  77. Margon, B. The Sloan digital sky survey. Phil. Trans. R. Soc. Lond. A 357(1750), 93 (1999); also preprint astro-ph/9805314 at 〈xxx.lanl.gov〉 (1998).

    Article  ADS  Google Scholar 

  78. Folkes, S. R. et al. (the 2dF team) The 2dF galaxy redshift survey: spectral types and luminosity functions. Mon. Not. R. Astron. Soc. 308, 459–472 (1999).

    Article  ADS  CAS  Google Scholar 

  79. Burles, S. & Tytler, D. The deuterium abundance toward Q1937-1009. Astrophys. J. 499, 699– 712 (1998).

    Article  ADS  CAS  Google Scholar 

  80. Lin, H. et al. The power spectrum of galaxy clustering in the Las Campanas redshift survey. Astrophys. J. 471, 617– 635 (1996).

    Article  ADS  Google Scholar 

  81. Hoyle, F., Baugh, C. M., Shanks, T. & Ratcliffe, A. The Durham/UKST galaxy redshift survey—VI. Power spectrum analysis of clustering. Mon. Not. R. Astron. Soc. 309, 659– 671 (1999).

    Article  ADS  Google Scholar 

  82. Mellier, Y. Probing the universe with weak lensing. Annu. Rev. Astron. Astrophys. 37, 127 (1999).

    Article  ADS  Google Scholar 

  83. Borgani, S. et al. Measuring Ωm with the ROSAT Deep Cluster Survey. Astrophys. J. (submitted).

  84. Carlstrom, J. E. Imaging the Sunyaer-Zel'dovich effect. Physica Scripta T 85, 148–155 (2000).

    Article  ADS  Google Scholar 

  85. Girardi, M., Giuricin, G., Mardirossian, F., Mezzetti, M. & Boschin, W. Optical mass estimates of galaxy clusters. Astrophys. J. 505, 74– 95 (1998).

    Article  ADS  Google Scholar 

  86. Abadi, M. G., Lambas, D. G. & Muriel, H. Correlation length of X-ray-brightest Abell clusters.. Astrophys. J. 507, 526– 529 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the REFLEX collaboration for giving us the opportunity to discuss material in advance of publication; C. Collins, F. Governato and M. Urry for reading the manuscript; D. Lazzati and A. Moretti for their help with some of the figures; and M. Girardi for providing the data files on which Fig. 5 is based. We also acknowledge several discussions on X-ray clusters with P. Rosati.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Borgani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgani, S., Guzzo, L. X-ray clusters of galaxies as tracers of structure in the Universe. Nature 409, 39–45 (2001). https://doi.org/10.1038/35051000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing