Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Granite magma formation, transport and emplacement in the Earth's crust

Abstract

The origin of granites was once a question solely for petrologists and geochemists. But in recent years a consensus has emerged that recognizes the essential role of deformation in the segregation, transport and emplacement of silica-rich melts in the continental crust. Accepted petrological models are being questioned, either because they require unrealistic rheological behaviours of rocks and magmas, or because they do not satisfactorily explain the available structural or geophysical data. Provided flow is continuous, mechanical considerations suggest that—far from being geologically sluggish—granite magmatism is a rapid, dynamic process operating at timescales of ≤100,000 years, irrespective of tectonic setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Change in melt fraction (vol.%) as a function of temperature for a range of common crustal rock types undergoing fluid-absent melting (from ref. 9).
Figure 2: Melt viscosity as a function of melt water (wt%) content for typical tonalite and leucogranite liquid compositions (data from ref.15 and references therein) at a fixed pressure of 800 MPa.
Figure 3: Mean (vertical) thickness versus mean (horizontal) length for granitic plutons and laccoliths.
Figure 4: Estimated filling times for tabular disk-shaped plutons.

Similar content being viewed by others

References

  1. Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).

    Article  ADS  Google Scholar 

  2. Brown, M. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Sci. Rev. 36, 83–130 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Petford, N., Clemens, J. D. & Vigneresse, J. L. in Granite: From Segregation of Melt to Emplacement Fabrics (eds Bouchez, J. L., Hutton, D. H. W. & Stephens, W. E.) 3–10 (Kluwer, Dordrecht, 1997).

    Book  Google Scholar 

  4. Thompson, A. B. in Understanding Granites: Integrating New and Classical Techniques (eds Castro, A., Fernandez, C. Vigneresse, J. L.) 7– 25 (Geological Society of London Special Publication 158, 1999).

    Google Scholar 

  5. Thompson, A. B. & Connolly, J. A. D. Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J. Geophys. Res. 100, 15556–15579 (1995).

    Article  ADS  Google Scholar 

  6. Huppert, H. E. & Sparks, R. S. J. The generation of granitic magmas by intrusion of basalt into continental crust. J. Petrol. 29, 599–642 ( 1988).

    Article  ADS  CAS  Google Scholar 

  7. Bergantz, G. W. Underplating and partial melting: implications for melt generation and extraction. Science 254, 1039–1095 (1989).

    Google Scholar 

  8. Brown, M. & Rushmer, T. in Deformation-Enhanced Fluid Transport in the Earth's Crust and Mantle (ed. Holness, M.) 111– 144 (Chapman & Hall, London, 1997).

    Google Scholar 

  9. Vigneresse, J. L., Barbey, P. & Cuney, M. Rheological transitions during partial melting and crystallisation with application to felsic magma segregation and transfer. J. Petrol. 37, 1579–1600 ( 1996).

    Article  ADS  CAS  Google Scholar 

  10. Clemens, J. D & Mawer, C. K. Granitic magma transport by fracture propagation. Tectonophysics 204, 339– 360 (1992).

    Article  ADS  Google Scholar 

  11. Watt, G. R., Oliver, N. H. S. & Griffin, B. J. Evidence for reaction-induced microfracturing in granulite facies migmatites. Geology 28, 327–330 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Petford, N. & Koenders, M. A. Self-organisation and fracture connectivity in rapidly heated continental crust. J. Struct. Geol. 20, 1425–1434 ( 1998).

    Article  ADS  Google Scholar 

  13. Dingwell, D. B., Bagdassarov, N. S., Bussod, G. Y. & Webb, S. L. in Experiments at High Pressure and Applications to the Earth's Mantle (ed. Luth, R. W.) 131–196 (Short course Vol. 21, Mineralogical Association of Canada, 1993).

    Google Scholar 

  14. Pitcher, W. S. The Nature and Origin of Granite (Blackie Academic, Glasgow, 1993).

    Book  Google Scholar 

  15. Clemens, J. D. & Petford, N. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings. J. Geol. Soc. Lond. 156, 1057–1060 (1999).

    Article  CAS  Google Scholar 

  16. McKenzie, D. The generation and compaction of partially molten rocks. J. Petrol. 25, 713–765 ( 1984).

    Article  ADS  CAS  Google Scholar 

  17. Wickham, S. M. The segregation and emplacement of granitic magmas. J. Geol. Soc. Lond. 144, 281–297 ( 1987).

    Article  Google Scholar 

  18. Petford, N. Segregation of tonalitic-trondhjemitic melts in the continental crust: the mantle connection. J. Geophys. Res. 100, 15735–15743 (1995).

    Article  ADS  Google Scholar 

  19. Kelemen, P. B. & Dick, H. J. B. Focused flow and localized deformation in the upper mantle: juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. J. Geophys. Res. 100, 423–438 (1995).

    Article  ADS  Google Scholar 

  20. Rutter, E. H. & Neumann, D. H. K. Experimental deformation of partially molten Westerly granite under fluid-absent conditions with implications for the extraction of granitic magmas. J. Geophys. Res. 100, 15697–15715 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Davidson, C., Schmid, S. M. & Hollister, L. S. Role of melt during deformation in the deep crust. Terra Nova 6, 133–142 (1994).

    Article  ADS  Google Scholar 

  22. Arzi, A. A. Critical phenomena in the rheology of partially molten rocks. Tectonophysics 44, 173–184 (1979).

    Article  ADS  Google Scholar 

  23. Sawyer, E. W. Disequilibrium melting and the rate of melt-residuum separation during migmatisation of mafic rocks from the Grenville front, Quebec. J. Petrol. 32, 701–38 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Davies, G. R. & Tommasini, S. Isotopic disequilibrium during rapid crustal anatexis: implications for petrogenetic studies of magmatic processes. Chem. Geol. 162, 169– 191 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Clemens, J. D., Petford, N. & Mawer. C. K. in Deformation-Enhanced Fluid Transport in the Earth's Crust and Mantle (ed. Holness, M.) 145–172 (Chapman & Hall, Lond. 1997).

    Google Scholar 

  26. Petford, N., Kerr, R. C. & Lister, J. R. Dike transport of granitoid magmas. Geology 21, 845–848 ( 1993).

    Article  ADS  Google Scholar 

  27. D'Lemos, R. S., Brown, M. & Strachan, R. A. Granite magma generation, ascent and emplacement within a transpressional orogen. J. Geol. Soc. Lond. 149, 487–490 (1993).

    Article  Google Scholar 

  28. Collins, W. J & Sawyer, E. W. Pervasive granitoid magma transport through the lower-middle crust during non-coaxial compressional deformation. J. Metamorph. Geol. 14, 565– 579 (1996).

    Article  ADS  Google Scholar 

  29. Weinberg, R. F. & Podladchikov, Y. Y. Diapiric ascent of magmas through power law crust and mantle. J. Geophys. Res. 99, 9543–9559 ( 1994).

    Article  ADS  Google Scholar 

  30. Marsh, B. D. On the mechanics of igneous diapirism, stoping and zone melting. Am. J. Sci. 282, 808–855 (1982).

    Article  ADS  Google Scholar 

  31. Brown, M & Solar, G. S. The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm. Tectonophysics 312, 1–33 (1999).

    Article  ADS  Google Scholar 

  32. Weinberg, R. F. Mesoscale pervasive felsic magma migration: alternatives to dyking. Lithos 46, 393–410 ( 1999).

    Article  ADS  CAS  Google Scholar 

  33. Scalliet, B., Pecher, A., Rochette, P. & Champenois, M. The Gangotri granite (Garhwal Himalaya): laccolith emplacement in an extending collisional belt. J. Geophys. Res. 100, 585– 607 (1994).

    Article  ADS  Google Scholar 

  34. Brandon, A. D., Chacko, T. & Creaser, R. A. Constraints on rates of granitic magma transport from epidote dissolution kinetics. Science 271, 1845–1848 (1996).

    Article  ADS  CAS  Google Scholar 

  35. Petford, N. & Koenders, M. A. Granular flow and viscous fluctuations in low Bagnold number granitic magmas. J. Geol. Soc. Lond. 155, 873–881 (1998).

    Article  CAS  Google Scholar 

  36. Hogan, J. P. & Gilbert, M. C. The A-type Mount Scott granite sheet: importance of crustal magma traps. J. Geophys. Res. 100, 15799–15792 (1995).

    Article  ADS  Google Scholar 

  37. Hutton, D. H. W. Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Trans. R. Soc. Edinb.: Earth Sci. 79, 245–255 (1988).

    Article  Google Scholar 

  38. Fernandez, C. & Castro, A. Pluton accommodation at high strain rates in the upper continental crust. The example of the Central Extremadura batholith, Spain. J. Struct. Geol. 21, 1143 –1149 (1999).

    Article  ADS  Google Scholar 

  39. Benn, K., Odonne, F. & de Saint Blanquat, M. Pluton emplacement during transpression in brittle crust: new views from analogue experiments. Geology 26, 1079–1082 (1998).

    Article  ADS  Google Scholar 

  40. Cruden, A. R. On the emplacement of tabular granites. J. Geol. Soc. Lond. 155, 853–862 (1998).

    Article  CAS  Google Scholar 

  41. Roman-Berdiel, T., Gapais, D. & Brun, J. P. Granite intrusion along strike-slip zones in experiment and nature. Am. J. Sci. 297, 651– 678 (1997).

    Article  ADS  CAS  Google Scholar 

  42. Brown, E. H. & McClelland, W. C. Pluton emplacement by sheeting and vertical ballooning in part of the southeast Coast Plutonic Complex, British Columbia. Geol. Soc. Am. Bull. 112, 708– 719 (2000).

    Article  ADS  Google Scholar 

  43. Miller, R. B. & Paterson, S. R. In defence of magmatic diapirs. J. Struct. Geol. 21, 1161– 1173 (1999).

    Article  ADS  Google Scholar 

  44. Grocott, J., Garde, A., Chadwick, B., Cruden, A. R. & Swager, C. Emplacement of Rapakivi granite and syenite by floor depression and roof uplift in the Paleoproterozoic Ketilidian orogen, South Greenland. J. Geol. Soc. Lond. 156, 15– 24 (1999).

    Article  Google Scholar 

  45. Bouchez, J. L., Hutton, D. H. W. & Stephens, W. E. (eds) Granite: From Segregation of Melt to Emplacement Fabrics (Kluwer, Dordrecht, 1997).

    Book  Google Scholar 

  46. Améglio, L. & Vigneresse, J. L. in Understanding Granites: Integrating New and Classical Techniques (eds Castro, A., Fernandez, C. & Vigneresse, J. L.) 39–54 (Geological Society of London Special Publication 158, 1999).

    Google Scholar 

  47. Evans, D. J. et al. Seismic reflection data and the internal structure of the Lake District batholith, Cumbria, northern England. Proc. Yorkshire Geol. Soc. 50, 11–24 ( 1994).

    Article  Google Scholar 

  48. McCaffrey, K. J. W. & Petford, N. Are granitic intrusions scale invariant? J. Geol. Soc. Lond. 154, 1–4 (1997).

    Article  CAS  Google Scholar 

  49. Atherton, M. P. Shape and intrusion style of the Coastal batholith, Peru. In 4th Int. Symp. on Andean Geodynamics (extended abstr.) 60– 63 (1999).

  50. Bateman, P. C. Plutonism in the central part of the Sierra Nevada batholith, California. US Geol. Surv. Prof. Pap. 1483 ( 1992).

  51. Cruden, A. R., Tobisch, O. T. & Launeau, P. Magnetic fabric evidence for conduit-fed emplacement of a tabular intrusion: Dinkey Creek pluton, central Sierra Nevada batholith, California. J. Geophys. Res. 104, 10511– 10530 (1999).

    Article  ADS  Google Scholar 

  52. Harris, N., Vance, D. & Ayres, M. From sediment to granite: timescales of anatexis in the upper crust. Chem. Geol. 162, 155– 167 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Brown and A. Brandon for helpful reviews and J. Clemens and M. Atherton for useful discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Petford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petford, N., Cruden, A., McCaffrey, K. et al. Granite magma formation, transport and emplacement in the Earth's crust . Nature 408, 669–673 (2000). https://doi.org/10.1038/35047000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35047000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing