Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1

Abstract

One of the critical responses to insulin treatment is the stimulation of protein synthesis through induced phosphorylation of the eIF-4E-binding protein 1 (4E-BP1), and the subsequent release of the translation initiation factor, eIF-4E. Here we report that ATM, the protein product of the ATM gene that is mutated in the disease ataxia telangiectasia, phosphorylates 4E-BP1 at Ser 111 in vitro and that insulin treatment induces phosphorylation of 4E-BP1 at Ser 111 in vivo in an ATM-dependent manner. In addition, insulin treatment of cells enhances the specific kinase activity of ATM. Cells lacking ATM kinase activity exhibit a significant decrease in the insulin-induced dissociation of 4E-BP1 from eIF-4E. These results suggest an unexpected role for ATM in an insulin-signalling pathway that controls translation initiation. Through this mechanism, a lack of ATM activity probably contributes to some of the metabolic abnormalities, such as poor growth and insulin resistance, reported in ataxia telangiectasia cells and patients with ataxia telangiectasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphorylation of Ser 111 in rat 4E-BP1 by ATM in vitro.
Figure 2: ATM phosphorylation of 4E-BP1 after insulin stimulation.
Figure 3: In vivo phosphorylation of Ser 111 of bound 4E-BP1 in cells co-transfected with wild-type (WT) or kinase-dead (KD) ATM.
Figure 4: Comparison of the release of bound 4E-BP1 from eIF-4E in different cell types as a function of ATM status after insulin treatment.
Figure 5: Proposed model for the signalling process involving phosphorylation of 4E-BP1 bound to eIF-4E.

Similar content being viewed by others

References

  1. Canman, C. E. & Lim, D. S. The role of ATM in DNA damage responses and cancer. Oncogene 17, 3301–3308 (1998).

    Article  Google Scholar 

  2. Lavin, M. F. & Shiloh, Y. The genetic defect in ataxia-telangiectasia. Annu. Rev. Immunol. 15, 177–202 (1997).

    Article  CAS  Google Scholar 

  3. Elson, A. et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc. Natl Acad. Sci. USA 93, 13084 –13089 (1996).

    Article  CAS  Google Scholar 

  4. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 ( 1996).

    Article  CAS  Google Scholar 

  5. Bar, R. S. et al. Extreme insulin resistance in ataxia telangiectasia: defect in affinity of insulin receptors. N. Engl. J. Med. 298 , 1164–1171 (1978).

    Article  CAS  Google Scholar 

  6. Schalch, D. S., McFarlin, D. E. & Barlow, M. H. An unusual form of diabetes mellitus in ataxia telangiectasia. N. Engl. J. Med. 282, 1396–1402 (1970).

    Article  CAS  Google Scholar 

  7. Blevins, L. S. Jr & Gebhart, S. S. Insulin-resistant diabetes mellitus in a black woman with ataxia-telangiectasia . South. Med. J. 89, 619– 621 (1996).

    Article  Google Scholar 

  8. Morgan, S. E. & Kastan, M. B. p53 and ATM: cell cycle, cell death, and cancer. Adv. Cancer Res. 71, 1–25 (1997).

    Article  CAS  Google Scholar 

  9. Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  Google Scholar 

  10. Xu, Y. & Baltimore, D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10, 2401–2410 (1996).

    Article  CAS  Google Scholar 

  11. Shiloh, Y., Tabor, E. & Becker, Y. Abnormal response of ataxia-telangiectasia cells to agents that break the deoxyribose moiety of DNA via a targeted free radical mechanism. Carcinogenesis 4, 1317– 1322 (1983).

    Article  CAS  Google Scholar 

  12. Elmore, E. & Swift, M. Growth of cultured cells from patients with ataxia-telangiectasia. J. Cell Physiol. 89, 429–431 (1976).

    Article  CAS  Google Scholar 

  13. Thomas, G. & Hall, M. N. TOR signalling and control of cell growth. Curr. Opin. Cell Biol. 9, 782–787 (1997).

    Article  CAS  Google Scholar 

  14. Brown, E. J. & Schreiber, S. L. A signaling pathway to translational control. Cell 86, 517– 520 (1996).

    Article  CAS  Google Scholar 

  15. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749 –1753 (1995).

    Article  CAS  Google Scholar 

  16. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677– 1679 (1998).

    Article  CAS  Google Scholar 

  17. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage . Science 281, 1674–1677 (1998).

    Article  CAS  Google Scholar 

  18. Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162– 1166 (1999).

    Article  CAS  Google Scholar 

  19. Zhou, B. B. et al. Caffeine abolishes the mammalian G2/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J. Biol. Chem. 275, 10342–10348 (2000).

    Article  CAS  Google Scholar 

  20. Lim, D. S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway . Nature 404, 613–617 (2000).

    Article  CAS  Google Scholar 

  21. Sarkaria, J. N. et al. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res. 58, 4375–4382 (1998).

    CAS  PubMed  Google Scholar 

  22. Chan, D. W. et al. Purification and characterization of ATM from human placenta. A manganese-dependent, wortmannin-sensitive serine/threonine protein kinase . J. Biol. Chem. 275, 7803– 7810 (2000).

    Article  CAS  Google Scholar 

  23. Gingras, A. C. et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism . Genes Dev. 13, 1422–1437 (1999).

    Article  CAS  Google Scholar 

  24. Yang, D., Brunn, G. J. & Lawrence, J. C. Jr Mutational analysis of sites in the translational regulator, PHAS-I, that are selectively phosphorylated by mTOR . FEBS Lett. 453, 387–390 (1999).

    Article  CAS  Google Scholar 

  25. Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H. & Sabatini, D. M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl Acad. Sci. USA 95, 1432–1437 (1998).

    Article  CAS  Google Scholar 

  26. Hara, K. et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272, 26457–26463 (1997).

    Article  CAS  Google Scholar 

  27. Brunn, G. J. et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99–101 (1997).

    Article  CAS  Google Scholar 

  28. Lin, T. A. et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266, 653–656 (1994).

    Article  CAS  Google Scholar 

  29. Pause, A. et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature 371, 762–767 (1994).

    Article  CAS  Google Scholar 

  30. Sonenberg, N. & Gingras, A. C. The mRNA 5' cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell Biol. 10, 268–275 ( 1998).

    Article  CAS  Google Scholar 

  31. Lawrence, J. C. Jr & Abraham, R. T. PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem. Sci. 22, 345–349 (1997).

    Article  CAS  Google Scholar 

  32. Proud, C. G. & Denton, R. M. Molecular mechanisms for the control of translation by insulin. Biochem. J. 328, 329–341 (1997).

    Article  CAS  Google Scholar 

  33. Kim, S. T., Lim, D. S., Canman, C. E. & Kastan, M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538 –37543 (1999).

    Article  CAS  Google Scholar 

  34. Heesom, K. J., Avison, M. B., Diggle, T. A. & Denton, R. M. Insulin-stimulated kinase from rat fat cells that phosphorylates initiation factor 4E-binding protein 1 on the rapamycin-insensitive site (serine-111) . Biochem. J. 336, 39–48 (1998).

    Article  CAS  Google Scholar 

  35. Brown, E. J. et al. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377, 441– 446 (1995).

    Article  CAS  Google Scholar 

  36. Diggle, T. A. et al. Both rapamycin-sensitive and -insensitive pathways are involved in the phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in response to insulin in rat epididymal fat-cells. Biochem. J. 316, 447–453 ( 1996).

    Article  CAS  Google Scholar 

  37. Beretta, L., Gingras, A. C., Svitkin, Y. V., Hall, M. N. & Sonenberg, N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation . EMBO J. 15, 658–664 (1996).

    Article  CAS  Google Scholar 

  38. Mothe-Satney, I., Yang, D., Fadden, P., Haystead, T. A. & Lawrence, J.C. Jr Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol. Cell. Biol. 20, 3558–3567 (2000).

    Article  CAS  Google Scholar 

  39. Fadden, P., Haystead, T. A. & Lawrence, J. C. Jr Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J. Biol. Chem. 272 , 10240–10247 (1997).

    Article  CAS  Google Scholar 

  40. Fadden, P., Haystead, T. A. & Lawrence, J. C. Jr Phosphorylation of the translational regulator, PHAS-I, by protein kinase CK2. FEBS Lett. 435, 105–109 (1998).

    Article  CAS  Google Scholar 

  41. Westphal, C. H. et al. Genetic interactions between atm and p53 influence cellular proliferation and irradiation-induced cell cycle checkpoints. Cancer Res. 57, 1664–1667 (1997).

    CAS  PubMed  Google Scholar 

  42. Brown, K. D. et al. The ataxia-telangiectasia gene product, a constitutively expressed nuclear protein that is not up-regulated following genome damage . Proc. Natl Acad. Sci. USA 94, 1840– 1845 (1997).

    Article  CAS  Google Scholar 

  43. Lakin, N. D. et al. Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 13, 2707– 2716 (1996).

    CAS  PubMed  Google Scholar 

  44. Lim, D. S. et al. ATM binds to beta-adaptin in cytoplasmic vesicles. Proc. Natl Acad. Sci. USA 95, 10146– 10151 (1998).

    Article  CAS  Google Scholar 

  45. Watters, D. et al. Localization of a portion of extranuclear ATM to peroxisomes . J. Biol. Chem. 274, 34277– 34282 (1999).

    Article  CAS  Google Scholar 

  46. Barlow, C. et al. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc. Natl Acad. Sci. USA 97 , 871–876 (2000).

    Article  CAS  Google Scholar 

  47. Barlow, C. et al. ATM deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development 125, 4007–4017 (1998).

    CAS  PubMed  Google Scholar 

  48. Oka, A. & Takashima, S. Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci. Lett. 252, 195–198 (1998).

    Article  CAS  Google Scholar 

  49. Tuhackova, Z., Sovova, V., Sloncova, E. & Proud, C. G. Rapamycin-resistant phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in v-SRC-transformed hamster fibroblasts. Int. J. Cancer 81, 963–969 ( 1999).

    Article  CAS  Google Scholar 

  50. Poulin, F., Gingras, A. C., Olsen, H., Chevalier, S. & Sonenberg, N. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J. Biol. Chem. 273, 14002–14007 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. M. Gilmer and Y. Shiloh for monoclonal antibodies to ATM; D. Sabatini for 4E-BP1 and eIF-4E cDNA reagents; P. Leder for AT-null murine fibroblasts; A. Friedman for Mouse 3T3 L1 cells. We also thank P. Houghton and J. C. Jones for helpful comments on the manuscript, and C. Canman, D-S. Lim, S-T. Kim, D. Woods and A. Justman for advice and technical assistance. This work was supported by grants from the NIH. M.B.K. is also supported by the American Lebanese Syrian Associated Charities (ALSAC) of the St. Jude Children's Research Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Kastan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, DQ., Kastan, M. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol 2, 893–898 (2000). https://doi.org/10.1038/35046542

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046542

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing