Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover

Abstract

Mutational inactivation of the APC gene is a key early event in the development of familial adenomatous polyposis and colon cancer. APC suppresses tumour progression by promoting degradation of the oncogenic transcriptional activator β-catenin. APC gene mutations can lead to abnormally high levels of β-catenin in the nucleus, and the consequent activation of transforming genes. Here, we show that APC is a nuclear-cytoplasmic shuttling protein, and that it can function as a β-catenin chaperone. APC contains two active nuclear export sequences (NES) at the amino terminus, and mutagenesis of these conserved motifs blocks nuclear export dependent on the CRM1 export receptor. Treatment of cells with the CRM1-specific export inhibitor leptomycin B shifts APC from cytoplasm to nucleus. β-catenin localization is also regulated by CRM1, but in an APC-dependent manner. Transient expression of wild-type APC in SW480 (APCmut/mut) colon cancer cells enhances nuclear export and degradation of β-catenin, and these effects can be blocked by mutagenesis of the APC NES. These findings suggest that wild-type APC controls the nuclear accumulation of β-catenin by a combination of nuclear export and cytoplasmic degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear-cytoplasmic shuttling of APC.
Figure 2: Identification of APC nuclear export signals.
Figure 3: Site-directed NES mutations block APC nuclear export.
Figure 4: β-catenin accumulates in the nucleus when nuclear export is blocked.
Figure 5: APC(1–1,309) can export β-catenin from the nucleus.
Figure 6: Co-localization of wild-type APC and β-catenin in SW480 cells.
Figure 7: CRM1 regulates APC-dependent degradation of β-catenin.
Figure 8: Model for APC-mediated nuclear export of β-catenin.

Similar content being viewed by others

References

  1. Miyoshi, Y. et al. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc. Natl Acad. Sci. USA 89, 4452–4456 (1992).

    Article  CAS  Google Scholar 

  2. Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  3. Laken et al. Analysis of masked mutations in familial adenomatous polyposis. Proc. Natl Acad. Sci. USA 96, 2322–2326 (1999).

    Article  CAS  Google Scholar 

  4. Miyoshi, Y. et al. Somatic mutations of the APC gene in colorectal tumours: mutation cluster region in the APC gene. Hum. Mol. Gen. 1, 229–233 (1992).

    Article  CAS  Google Scholar 

  5. Polakis, P. The adenomatous polyposis coli (APC) tumour suppressor. Biochim. Biophys. Acta 1332, F127–F147 (1997).

    CAS  Google Scholar 

  6. Bienz, M. APC: The plot thickens. Curr. Opin. Genet. Dev. 9, 595–603 (1999).

    Article  CAS  Google Scholar 

  7. Rubinfeld, B. et al. Association of the APC gene product with beta-catenin. Science 262, 1731–1734 ( 1993).

    Article  CAS  Google Scholar 

  8. Su, L-K., Vogelstein B. & Kinzler, K. W. Association of the APC tumour suppressor protein with catenins. Science 262, 1734– 1737 (1993).

    Article  CAS  Google Scholar 

  9. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumour suppressor protein. Proc. Natl Acad. Sci. USA 92, 3046– 3050 (1995).

    Article  CAS  Google Scholar 

  10. Gumbiner, B.M. Carcinogenesis: A balance between β-catenin and APC. Curr. Biol. 7, R443–R446 ( 1997).

    Article  CAS  Google Scholar 

  11. Morin, P. J. β-catenin signaling and cancer. BioEssays 21, 1021–1030 (1999).

    Article  CAS  Google Scholar 

  12. Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287, 1606–1609 (2000).

    Article  CAS  Google Scholar 

  13. Morin, P. J. et al. Activation of β-catenin-TCF signalling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  14. Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790– 1792 (1997).

    Article  CAS  Google Scholar 

  15. Satoh, S. et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nature Genet. 24, 245–250 ( 2000).

    Article  CAS  Google Scholar 

  16. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 ( 1998).

    Article  CAS  Google Scholar 

  17. Aoki, M., Hecht, A., Kruse, U., Kemler, R. & Vogt, P. K. Nuclear endpoint of Wnt signalling: Neoplastic transformation induced by transactivating lymphoid-enhancing factor 1. Proc. Natl Acad. Sci. USA 96, 139–144 (1999).

    Article  CAS  Google Scholar 

  18. Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  Google Scholar 

  19. Smith, K. J., Levy, D. B., Maupin, P., Pollard, T. D., Vogelstein, B. & Kinzler, K. W. Wild-type but not mutant APC associates with the microtubule cytoskeleton . Cancer Res. 54, 3672– 3675 (1994).

    CAS  Google Scholar 

  20. Munemitsu, S., Souza, B., Muller, O., Albert, I., Rubinfeld, B. & Polakis, P. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res. 54, 3676–3681 (1994).

    CAS  Google Scholar 

  21. Mimori-Kiyosue, Y, Shiina, N. & Tsukita, S. Adenomatous Polyposis Coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J. Cell Biol. 148, 505–517 (2000).

    Article  CAS  Google Scholar 

  22. Neufeld, K. L. & White, R. L. Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc. Natl Acad. Sci. USA 94, 3034–3039 (1997).

    Article  CAS  Google Scholar 

  23. Efstathiou, J. A. et al. Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. Proc. Natl Acad. Sci. USA 95, 3122–3127 (1998).

    Article  CAS  Google Scholar 

  24. Deka, J. et al. The APC protein binds to A/T rich DNA sequences. Oncogene 18, 5654–5661 ( 1999).

    Article  CAS  Google Scholar 

  25. Miyashiro, I. et al. Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. Oncogene 11, 89–96 ( 1995).

    CAS  Google Scholar 

  26. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    Article  CAS  Google Scholar 

  27. Stade, K., Ford, C. S., Guthrie, C. & Weis, K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90, 1041–1050 (1997).

    Article  CAS  Google Scholar 

  28. Neville, M., Stutz, F., Lee, L., Davis, L. I. & Rosbash, M. The importin–beta family member CRM1p bridges the interaction between Rev and the nuclear pore complex during nuclear export . Curr. Biol. 7, 767–775 (1997).

    Article  CAS  Google Scholar 

  29. Ossareh-Nazari, B., Bachelerie, F. & Dargemont, C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278, 141– 144 (1997).

    Article  CAS  Google Scholar 

  30. Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308 –311 (1997).

    Article  CAS  Google Scholar 

  31. Gorlich, D. Transport into and out of the cell nucleus. EMBO J. 17, 2721–2727 (1998).

    Article  CAS  Google Scholar 

  32. Henderson, B. R. and Eleftheriou, A. A comparison of the activity, sequence specificity and CRM1-dependence of different nuclear export signals. Exp. Cell Res. 256, 213– 224 (2000).

    Article  CAS  Google Scholar 

  33. Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T. & Levine, A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564 (1998).

    Article  CAS  Google Scholar 

  34. Bogerd, H. P., Fridell, R. A., Benson, R. E., Hua, J. & Cullen, B. R. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol. Cell. Biol. 16, 4207–4214 (1996).

    Article  CAS  Google Scholar 

  35. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to Crm1. Exp. Cell Res. 242, 540–547 (1998).

    Article  CAS  Google Scholar 

  36. Nakagawa, H. et al. Identification of a brain-specific APC homologue, APCL , and its interaction with β-catenin. Cancer Res. 58, 5176–5181 (1998).

    CAS  Google Scholar 

  37. van Es, J.H. et al. Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. Curr. Biol. 9, 105 –108 (1999).

    Article  CAS  Google Scholar 

  38. Joslyn, G., Richardson, D. S., White, R. & Alber, T. Dimer formation by an N-terminal coiled coil in the APC protein. Proc. Natl. Acad. Sci. USA 90, 11109– 11113 (1993).

    Article  CAS  Google Scholar 

  39. Su, L-K. et al. Association between wild-type and mutant APC gene products. Cancer Res. 53, 2728–2731 (1993).

    CAS  Google Scholar 

  40. Groden, J. et al. Response of colon cancer cell lines to the introduction of APC, a colon-specific tumour suppressor gene. Cancer Res. 55, 1531–1539 (1995).

    CAS  Google Scholar 

  41. Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665– 669 (1991).

    Article  CAS  Google Scholar 

  42. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human Axin and its association with the APC tumour suppressor, β-catenin and GSK3β. Curr. Biol. 8, 573– 581 (1998).

    Article  CAS  Google Scholar 

  43. Su, L-K. et al. APC binds to the novel protein EB1. Cancer Res. 55, 2972–2977 (1995).

    CAS  Google Scholar 

  44. Matsumine, A. et al. Binding of APC to the human homolog of the Drosophila Discs Large tumour suppressor protein. Science 272, 1020–1023 (1996).

    Article  CAS  Google Scholar 

  45. Hatashi, S. et al. A Drosophila homolog of the tumour suppressor gene adenomatous polyposis coli down-regulates beta-catenin but its zygotic expression is not essential for the regulation of Armadillo. Proc. Natl. Acad. Sci. USA 94, 242–247 ( 1997).

    Article  Google Scholar 

  46. Hengel, J. V., Vanhoenacker, P., Staes, K. & van Roy, F. Nuclear localization of the p120ctn Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. Proc. Natl. Acad. Sci. USA 96, 7980– 7985 (1999).

    Article  Google Scholar 

  47. Simcha, I. et al. Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J. Cell Biol. 141 , 1433–1448 (1998).

    Article  CAS  Google Scholar 

  48. Fagotto, F., Gluck, U. & Gumbiner, B. M. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr. Biol. 8, 181–190 (1998).

    Article  CAS  Google Scholar 

  49. Yokoya, F., Imamoto, N., Tachibana, T. & Yoneda, Y. β-catenin can be transported into the nucleus in a Ran-unassisted manner . Mol. Biol. Cell 10, 1119– 1131 (1999).

    Article  CAS  Google Scholar 

  50. Prieve, M.G. & Waterman, M.L. Nuclear localization and formation of β-catenin-lymphoid enhancer factor 1 complexes are not sufficient for activation of gene expression. Mol. Cell. Biol. 19, 4503–4515 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank B. Vogelstein, K. Kinzler and T. Dale for supplying plasmids, and M. Yoshida for leptomycin B. I am grateful to A. Eleftheriou and M. Galea for help with plasmid construction, and to J. Rodriguez and H. Rizos for comments on the manuscript. This research was supported in part by grants from the NSW Cancer Council, the Leo & Jenny Cancer Foundation, and the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, B. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nat Cell Biol 2, 653–660 (2000). https://doi.org/10.1038/35023605

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023605

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing