Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amplifying quantum signals with the single-electron transistor

Transistors have continuously reduced in size and increased in switching speed since their invention in 1947. The exponential pace of transistor evolution has led to a revolution in information acquisition, processing and communication technologies. And reigning over most digital applications is a single device structure — the field-effect transistor (FET). But as device dimensions approach the nanometre scale, quantum effects become increasingly important for device operation, and conceptually new transistor structures may need to be adopted. A notable example of such a structure is the single-electron transistor, or SET1,2,3,4. Although it is unlikely that SETs will replace FETs in conventional electronics, they should prove useful in ultra-low-noise analog applications. Moreover, because it is not affected by the same technological limitations as the FET, the SET can approach closely the quantum limit of sensitivity. It might also be a useful read-out device for a solid-state quantum computer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of a metal-oxide semiconductor field-effect transistor (MOSFET).
Figure 2: Variation of the source–drain current in a MOSFET as a function of the gate voltage.
Figure 3: The single-electron tunnelling transistor (SET).
Figure 4: Charge levels of the SET.
Figure 5: Variation at T = 0 of the source–drain current in a SET as a function of the voltage between drain and source and the voltage between gate and source.
Figure 6: Effective circuit elements describing the properties of a linear voltage amplifier with no feedback. The triangle represents an ideal noiseless voltage amplifier with infinite input impedance and zero output impedance.
Figure 7: The single-Cooper-pair box.
Figure 8: Measuring the state of a quantum system.

References

  1. Averin, D. V. & Likharev, K. K. Coulomb blockade of tunneling and coherent oscillations in small tunnel junctions. J. Low Temp. Phys. 62, 345–372 ( 1986).

    Article  ADS  Google Scholar 

  2. Fulton, T. A. & Dolan, G. J. Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59, 109–112 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Meirav U., Kastner, M. A. & Wind, S. J. Single-electron charging and periodic conductance resonances in GaAs nanostructures. Phys. Rev. Lett. 65, 771–774 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238–1242 ( 1998).

    Article  ADS  CAS  Google Scholar 

  5. Mather, J. C. Super photon counters. Nature 401, 654– 655 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Steane, A. Quantum computation. Rep. Prog. Phys. 61, 117 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Korotkov, A. N., Averin, D., Likharev, K. K. & Vasenko, S. A. in Single-Electron Tunneling and Mesoscopic Physics (eds Koch, H. & Lubbig, H.) 45–59 (Springer, Berlin, 1992).

  8. Mar, D. J., Westervelt R. & Hopkins, P. F. Cryogenic field-effect transistor with single electronic charge sensitivity. Appl. Phys. Lett. 64, 631–633 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Keller, M. W., Eichenberger, A., Martinis, J. M. & Zimmerman, N. M. A capacitance standard based on counting electrons. Science 285, 1706–1709 (1999).

    Article  CAS  Google Scholar 

  10. Schoelkopf, R. J., Moseley, S. H., Stahle, C. M., Wahlgreen, P. & Delsing, P. A concept for a submillimeter-wave single-photon counter? IEEE Trans. Appl. Supercond. 9, 2935–2938 (1999).

    Article  ADS  Google Scholar 

  11. Komiyama, S., Astafiev, O., Antonov, V., Kutsuwa, T. & Hirai, H. A single-photon detector in the far-infrared range. Nature 403, 405– 407 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence with a single Cooper pair. Phys. Scr. T76, 165–170 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786 –788 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Shnirman, A. & Schoen, G. Quantum measurements performed with a single-electron transistor. Phys. Rev. B 57, 15400–15407 (1997).

    Article  ADS  Google Scholar 

  15. Naveh, Y. & Likharev, K. K. Modeling of 10-nm-scale ballistic MOSFET's. IEEE Electron Devices Lett. 21, 242–244 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Devoret, M. H. & Grabert, H. in Single Charge Tunneling (eds Grabert, H. & Devoret, M. H.) 1– 19 (Plenum, New York, 1992).

    Book  Google Scholar 

  17. Grabert, H. Charge fluctuations in the single-electron box: perturbation expansion in the tunneling conductance. Phys. Rev. 50, 17364–17377 (1994).

    Article  CAS  Google Scholar 

  18. Schoeller, H. & Schoen, G. Mesoscopic quantum transport: resonant tunneling in the presence of a strong Coulomb interaction. Phys. Rev. B 50, 18436–18442 ( 1994).

    Article  ADS  CAS  Google Scholar 

  19. Shirakashi, J., Matsumoto, K., Miura, N. & Konagai, N. Single-electron charging effects in Nb/Nb oxide-based single-electron transistors at room temperature. Appl. Phys. Lett. 72, 1893– 1895 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Zhuang, L., Guo, L. & Chou, S. Y. Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl. Phys. Lett. 72 , 1205–1207 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Pashkin, Yu. A., Nakamura, Y. & Tsai, J. S. Room-temperature Al single-electron transistor made by electron-beam lithography. Appl. Phys. Lett. 76, 2256–2258 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Wolf, H. et al. Investigation of the offset charge noise in single electron tunneling devices. IEEE Trans. Instrum. Measurement 46, 303–306 (1997).

    Article  CAS  Google Scholar 

  23. Caves, C. M., Thorne, K. S., Drever, W. P., Sandberg, V. D. & Zimmermann, N. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle . Rev. Mod. Phys. 52, 341– 392 (1980).

    Article  ADS  Google Scholar 

  24. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  ADS  Google Scholar 

  25. Braginsky, V. B. & Khalili, F. Ya. Quantum Measurement (Cambridge Univ. Press, 1992).

    Book  Google Scholar 

  26. Pospieszalski, M. W. & Wollack, E. J. in Proceedings of 2nd ESA Workshop on Millimetre Wave Technology and Applications(WPP-149) 221–226 (ESA, Paris, 1998 ).

    Google Scholar 

  27. Gurvitz, S. A. Measurements with a noninvasive detector and dephasing mechanism. Phys. Rev. B 56, 15215–15223 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Korotkov, A. N. Preprint cond-mat/0003225 at 〈http://xxx.lanl.gov〉 (2000).

  29. Zorin, A. B. Quantum-limited electrometer based on single Cooper pair tunneling. Phys. Rev. Lett. 76, 4408–4411 (1996).

    Article  ADS  CAS  Google Scholar 

  30. André, M.-O, Mück, M., Clarke, J., Gail, J. & Heiden, C. Radio-frequency amplifier with tenth-kelvin noise temperature based on microstrip direct current superconducting quantum interference device. Appl. Phys. Lett. 75, 698–700 (1999).

    Article  ADS  Google Scholar 

  31. Mears, C. A. et al. Quantum-limited heterodyne detection of millimeter waves using superconducting tantalum tunnel junctions. Appl. Phys. Lett. 57, 2487–2489 (1990).

    Article  ADS  CAS  Google Scholar 

  32. Movshovich, R. et al. Observation of zero-point noise squeezing via a Josephson parametric amplifier. Phys. Rev. Lett. 65, 1419–1422 (1990).

    Article  ADS  CAS  Google Scholar 

  33. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710– 4713 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  35. Bocko, M. F., Herr, A. M. & Feldman, M. F. Prospects for quantum coherent computation using superconducting electronics. IEEE Trans. Appl. Supercond. 7, 3638–3641 (1997).

    Article  ADS  Google Scholar 

  36. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  CAS  Google Scholar 

  37. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120– 126 (1998).

    Article  ADS  CAS  Google Scholar 

  38. Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).

    Article  CAS  Google Scholar 

  39. Averin, D. V. Adiabatic quantum computation with Cooper pairs. Solid State Commun. 105, 657–659 ( 1998).

    Article  ADS  Google Scholar 

  40. Makhlin, Yu., Schoen, G. & Shnirman, A. Josephson-junction qubits with controlled couplings . Nature 398, 786–789 (1999).

    Article  Google Scholar 

  41. Korotkov, A. N. & Paalanen, M. A. Charge sensitivity of radio frequency single-electron transistor. Appl. Phys. Lett. 74, 4052–4054 ( 1999).

    Article  ADS  CAS  Google Scholar 

  42. Nogues, C. et al. Seeing a single photon without destroying it. Nature 400, 239–242 ( 1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Security Agency (NSA), the Advanced Research and Development Activity (ARDA) and the Army Research Office (ARO). One of us (M.H.D) acknowledges support from Commissariat à l'Energie Atomique (CEA). We thank D. Averin, J. Clarke, P. Delsing, D. Esteve A. Korotkov, K. Likharev, H. Mooij, D. Prober, G. Schoen and E. Wollack for helpful discussions and communications of results prior to publication.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devoret, M., Schoelkopf, R. Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000). https://doi.org/10.1038/35023253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023253

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing