Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resonance as a measure of pairing correlations in the high-Tc superconductor YBa2Cu3O6.6

Abstract

One of the most striking properties of the high-transition-temperature (high-Tc) superconductors is that they are all derived from insulating antiferromagnetic parent compounds. The intimate relationship between magnetism and superconductivity in these copper oxide materials has intrigued researchers from the outset1,2,3,4, because it does not exist in conventional superconductors. Evidence for this link comes from neutron-scattering experiments that show the unambiguous presence of short-range antiferromagnetic correlations (excitations) in the high-Tc superconductors. Even so, the role of such excitations in the pairing mechanism for superconductivity is still a subject of controversy5. For YBa2Cu3O6+x, where x controls the hole-doping level, the most prominent feature in the magnetic excitation spectrum is a sharp resonance (refs 6,7,8,9,10,11). Here we show that for underdoped YBa2Cu3O6.6, where x and Tc are below their optimal values, modest magnetic fields suppress the resonance significantly, much more so for fields approximately perpendicular to the CuO2 planes than for parallel fields. Our results indicate that the resonance measures pairing and phase coherence, suggesting that magnetism plays an important role in high-Tc superconductivity. The persistence of a field effect above Tc favours mechanisms in which the superconducting electron pairs are pre-formed in the normal state of underdoped copper oxide superconductors12,13,14, awaiting transition to the superconducting state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reciprocal lattice diagram and neutron scattering results.
Figure 2: Effect of a magnetic field on the momentum dependence of the spin excitations.
Figure 3: Effect of a magnetic field on the energy dependence of the spin excitations.
Figure 4: Effect of a magnetic field on the temperature dependence of the resonance and the field dependence of the resonance at about 10 K.

Similar content being viewed by others

References

  1. Anderson, P. W. The resonating valence bond state in La2CuO4. Science 235, 1196–1198 ( 1987).

    Article  ADS  CAS  Google Scholar 

  2. Emery, V. J. Theory of high-Tc superconductivity in oxides. Phys. Rev. Lett. 58, 2794–2797 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Hirsch, J. E. Antiferromagnetism, localization, and pairing in a two-dimensional model for CuO2. Phys. Rev. Lett. 59, 228 –231 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Schulz, H. J. Superconductivity and antiferromagnetism in the two-dimensional Hubbard model: scaling theory. Europhys. Lett. 4, 609– 615 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Scalapino, D. J. The cuprate pairing mechanism. Science 284, 1282–1283 (1999).

    Article  CAS  Google Scholar 

  6. Rossat-Mignod, J. et al. Neutron scattering study of the YBa2Cu3O 6+x system. Physica C 185–189, 86–92 (1991).

    Article  ADS  Google Scholar 

  7. Mook, H. A., Yethiraj, M., Aeppli, G., Mason, T. E. & Armstrong, T. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7. Phys. Rev. Lett. 70, 3490–3493 ( 1993).

    Article  ADS  CAS  Google Scholar 

  8. Fong, H. F. et al. Phonon and magnetic neutron scattering at 41 meV in YBa 2Cu3O7. Phys. Rev. Lett. 75, 316–319 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Dai, P., Yethiraj, M., Mook, H. A., Lindemer, T. B. & Doǧan, F. Magnetic dynamics in underdoped YBa2Cu3O7-x: direct observations of a superconducting gap. Phys. Rev. Lett. 77, 5425–5428 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Fong, H. F., Keimer, B., Milius, D. L. & Aksay, I. A. Superconducting-induced anomalies in the spin excitation spectra of underdoped YBa2Cu3O6+x. Phys. Rev. Lett. 78, 713–716 ( 1997).

    Article  ADS  CAS  Google Scholar 

  11. Dai, P. et al. The magnetic excitation spectrum and thermodynamics of high- Tc superconductors. Science 284, 1344–1347 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Uemura, Y. J. Bose-Einstein to BCS crossover picture for high-Tc cuprates. Physica C 282, 194–197 (1997).

    Article  ADS  Google Scholar 

  13. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Lee, P. A. & Wen, X. G. Unusual superconducting state of underdoped cuprates. Phys. Rev. Lett. 78, 4111–4114 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Junod, A., Erb, A. & Renner, Ch. Specific heat of high temperature superconductors in high fields at Tc: from BCS to the Bose-Einstein condensation. Physica C 317, 333–344 (1999).

    Article  ADS  Google Scholar 

  16. Junod, A. in Studies of High Temperature Superconductors Vol. 19 (ed. Narlikar, A. V.) 1 (Nova Science, New York, 1996 )

    Google Scholar 

  17. Janko, B. Thermodynamic constraints on the magnetic field dependence of the neutron resonance in cuprate superconductors. Preprint cond-mat/9912073 at 〈http://xxx.lanl.gov〉 (1999; cited 6 Dec. 1999).

  18. Tranquada, J. M. et al. Neutron-diffraction determination of antiferromagnetic structure of Cu ions in YBa2Cu3O6+x with x = 0.0 and 0.15. Phys. Rev. Lett. 60, 156–159 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Bourges, P. et al. High magnetic field dependence of spin fluctuations in YBa 2Cu3O7. Physica B 234–236 , 830–831 (1997).

    Article  ADS  Google Scholar 

  20. Dai, P., Mook, H. A. & Doǧan, F. Incommensurate magnetic fluctuations in YBa2Cu 3O6.6. Phys. Rev. Lett. 80, 1738—1741 (1998).

    Google Scholar 

  21. Mook, H. A. et al. Spin fluctuations in YBa2Cu3O6.6 . Nature 395, 580– 582 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Hayden, S. M. et al. Absolute measurements of the high-frequency magnetic dynamics in high-Tc superconductors. Physica B 241–243, 765–772 ( 1998).

    ADS  Google Scholar 

  23. Aeppli, G. et al. The weights of various features in the magnetic spectra of cuprates. Phys. Status Solidi B 215, 519 –522 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Arovas, D. P., Berlinsky, A. J., Kallin, C. & Zhang, S. C. Superconducting vortex with antiferromagnetic core. Phys. Rev. Lett. 79, 2871–2874 ( 1997).

    Article  ADS  CAS  Google Scholar 

  25. Anderson, P. W. Two crucial experimental tests of the resonating valence bond-Luttinger liquid interlayer tunneling theory of high-Tc superconductivity. Phys. Rev. B 42, 2624– 2626 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Renner, Ch., Revaz, B., Genoud, J.-Y., Kadowaki, K. & Fischer, Ø. Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O 8+δ. Phys. Rev. Lett. 80, 149 –152 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Basov, D. N. et al. Sum rules and interlayer conductivity of high-T c cuprates. Science 283, 49– 52 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Yin, L., Chakravarty, S. & Anderson, P. W. The neutron peak in the interlayer tunneling model of high temperature superconductors. Phys. Rev. Lett. 78, 3559–3562 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Scalapino, D. J. & White, S. R. Superconducting condensation energy and an antiferromagnetic exchange-based pairing mechanism . Phys. Rev. B 58, 8222– 8224 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Demler, E. & Zhang, S. C. Quantitative test of a microscopic mechanism of high-temperature superconductivity. Nature 396, 733–735 (1998).

    Article  ADS  CAS  Google Scholar 

  31. Chakravarty, S. & Kee, H.Y. Measuring condensate fraction in superconductors. Phys. Rev. B 61, 14821–14824 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Janko, A. Junod, A. Kapitulnik, M. V. Klein, Ch. Renner and D. J. Scalapino for discussions. The work at ORNL was supported by the US DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, P., Mook, H., Aeppli, G. et al. Resonance as a measure of pairing correlations in the high-Tc superconductor YBa2Cu3O6.6. Nature 406, 965–968 (2000). https://doi.org/10.1038/35023094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023094

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing