Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The APC tumour suppressor has a nuclear export function

Abstract

The adenomatous polpyposis coli (APC) protein is mutated in most colorectal tumours1. Nearly all APC mutations are truncations, and many of these terminate in the mutation cluster region located halfway through the protein2,3,4. In cancer cells expressing mutant APC, β-catenin is stabilized5,6 and translocates into the nucleus to act as a transcriptional co-activator of T-cell factor7. During normal development, APC also promotes the destabilization of β-catenin and Drosophila Armadillo8,9,10,11. It does so by binding to the Axin complex which earmarks β-catenin/Armadillo for degradation by the proteasome pathway12. APC has a regulatory role in this process13,14, which is poorly understood. Here we show that APC contains highly conserved nuclear export signals 3′ adjacent to the mutation cluster region that enable it to exit from the nucleus. This ability is lost in APC mutant cancer cells, and we provide evidence that β-catenin accumulates in the nucleus as a result. Thus, the ability of APC to exit from the nucleus appears to be critical for its tumour suppressor function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear export sequences within Drosophila and human APC.
Figure 2: Maps of APC proteins and positions of NESs relative to the MCR.
Figure 3: Wild-type and mutant APC in colon cancer cells.
Figure 4: Complementation tests in APC mutant cancer cells.

Similar content being viewed by others

References

  1. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  2. Nagase, H. & Nakamura, Y. Mutations of the APC (Adenomatous polyposis coli) gene. Hum. mutat. 2, 425 –434 (1993).

    Article  CAS  Google Scholar 

  3. Miyaki, M. et al. Characteristics of somatic mutation of the Adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 54, 3011–3020 (1994).

    CAS  PubMed  Google Scholar 

  4. Lamlum, H. et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's ‘two-hit’ hypothesis. Nature Med. 5, 1071–1075 (1999).

    Article  CAS  Google Scholar 

  5. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc. Natl Acad. Sci. USA 92, 3046– 3050 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Morin, P. J. et al. Activation of β-catenin-TCF signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  7. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  Google Scholar 

  8. Ahmed, Y., Hayashi, S., Levine, A. & Wieschaus, E. Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Cell 93, 1171– 1182 (1998).

    Article  CAS  Google Scholar 

  9. Yu, X., Waltzer, L. & Bienz, M. A new Drosophila APC homologue associated with adhesive zones of epithelial cells. Nature Cell Biol. 3, 144–151 (1999).

    Article  Google Scholar 

  10. McCartney, B. M. et al. Drosophila APC2 is a cytoskeletally-associated protein that regulates wingless signaling in the embryonic epidermis. J. Cell Biol. 146, 1303–1318 (1999).

    Article  CAS  Google Scholar 

  11. Farr, G. H. et al. Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J. Cell. Biol. 148, 691–702 (2000).

    Article  CAS  Google Scholar 

  12. Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287, 1606–1609 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Behrens, J. et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280, 596– 599 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr. Biol. 8, 573– 581 (1998).

    Article  CAS  Google Scholar 

  15. Neufeld, K. L. & White, R. L. Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc. Natl Acad. Sci. USA 94, 3034–3039 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Fagotto, F., Gluck, U. & Gumbiner, B. M. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr. Biol. 8, 181–190 (1998).

    Article  CAS  Google Scholar 

  17. Yokoya, F., Imamoto, N., Tachibana, T. & Yoneda, Y. β-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol. Biol. Cell 10, 1119– 1131 (1999).

    Article  CAS  Google Scholar 

  18. Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308 –311 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    Article  CAS  Google Scholar 

  20. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    Article  CAS  Google Scholar 

  21. Su, L. K., Vogelstein, B. & Kinzler, K. W. Association of the APC tumor suppressor protein with catenins. Science 262, 1734– 1737 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S. & Polakis, P. Loss of β-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 57, 4624– 4630 (1997).

    CAS  PubMed  Google Scholar 

  23. Smits, R. et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev. 13, 1309–1321 (1999).

    Article  CAS  Google Scholar 

  24. Shih, I. M., Yu, J., He, T. C., Vogelstein, B. & Kinzler, K. W. The β-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res. 60, 1671–1676 ( 2000).

    CAS  PubMed  Google Scholar 

  25. Lal, G. & Gallinger, S. Familial adenomatous polyposis. Sem. Surg. Onco. 18, 314– 323 (2000).

    Article  CAS  Google Scholar 

  26. Rowan, A. J. et al. APC mutations in sporadic colorectal tumors: A mutational ‘hotspot’ and interdependence of the ‘two hits’. Proc. Natl Acad. Sci. USA 97, 3352– 3357 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Näthke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 134, 165– 179 (1996).

    Article  Google Scholar 

  28. Hamada, F. et al. Identification and characterization of E-APC, a novel Drosophila homologue of the tumour suppressor APC. Genes Cells 4, 465–474 ( 1999).

    Article  CAS  Google Scholar 

  29. Bienz, M. APC: the plot thickens. Curr. Opin. Genet. Dev. 9, 595–603 (1999).

    Article  CAS  Google Scholar 

  30. Lantz, V. A., Clemens, S. E. & Miller, K. G. The actin cytoskeleton is required for maintenance of posterior pole plasm components in the Drosophila embryo. Mech. Dev. 85, 111–122 ( 1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Yoshida for LMB; I. Näthke for APC antibody; T. Brabletz and J. Behrens for colon cancer cells; H. Clevers for plasmids; M. West for help with the luciferase assays; C. Garvey for help with the Western blots; A. Cliffe for NES searches; and R. Arkowitz, T. Brabletz, F. Fagotto and W. Bodmer for discussion. R.R.-A. is supported by a Wellcome travelling fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariann Bienz.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosin-Arbesfeld, R., Townsley, F. & Bienz, M. The APC tumour suppressor has a nuclear export function. Nature 406, 1009–1012 (2000). https://doi.org/10.1038/35023016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023016

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing