Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event

Abstract

In the Jurassic period, the Early Toarcian oceanic anoxic event (about 183 million years ago) is associated with exceptionally high rates of organic-carbon burial, high palaeotemperatures and significant mass extinction1,2,3,4. Heavy carbon-isotope compositions in rocks and fossils of this age have been linked to the global burial of organic carbon, which is isotopically light. In contrast, examples of light carbon-isotope values from marine organic matter of Early Toarcian age have been explained principally in terms of localized upwelling of bottom water enriched in 12C versus 13C (refs 1,2,5,6). Here, however, we report carbon-isotope analyses of fossil wood which demonstrate that isotopically light carbon dominated all the upper oceanic, biospheric and atmospheric carbon reservoirs, and that this occurred despite the enhanced burial of organic carbon. We propose that—as has been suggested for the Late Palaeocene thermal maximum, some 55 million years ago7—the observed patterns were produced by voluminous and extremely rapid release of methane from gas hydrate contained in marine continental-margin sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeogeographic maps for Toarcian sections in northwestern Europe19,28.
Figure 2: Carbonate carbon-isotope data through selected European Toarcian sections.
Figure 3: Carbon-isotope data through the lower Whitby Mudstone, Hawsker Bottoms, Yorkshire.
Figure 4: Stratigraphic and carbon-isotope data through the upper Bagå Formation at Korsodde, southwestern Bornholm.

Similar content being viewed by others

References

  1. Jenkyns, H. C. The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary and geochemical evidence. Am. J. Sci. 288, 101 –151 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Jenkyns H. C. & Clayton, C. J. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 144, 687–706 (1997).

    Article  ADS  Google Scholar 

  3. Vakhrameev, V. A. Jurassic and Cretaceous Floras and Climates of the Earth (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  4. Harries, P. J. & Little, C. T. S. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 39–66 (1999).

    Article  Google Scholar 

  5. Küspert, W. G. in Cyclic and Event Stratification (eds Einsele, G. & Seilacher, A.) 482–501 (Springer, Berlin, Germany, 1982).

    Book  Google Scholar 

  6. Schouten, S., Van Kaam-Peters, H. M. E., Rijpstra, W. I. C., Schoell, M. & Sinninghe Damste, J. S. Effects of an oceanic anoxic event on the stable carbon isotopic composition of Early Toarcian carbon. Am. J. Sci. 300, 1–22, (2000).

    Article  ADS  CAS  Google Scholar 

  7. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

    Article  ADS  Google Scholar 

  8. Duarte, L. V. Clay minerals and geochemical evolution in the Toarcian-lower Aalenian of the lusitanian basin (Portugal). Cuad. Geol. Ibérica 24, 69–98 (1998).

    Google Scholar 

  9. Abbott, G. D., Ewbank, G., Edwards, D. & Guang-Yu, Wang Molecular characterization of some enigmatic Lower Devonian fossils. Geochim. Cosmochim. Acta 62, 1407–1418 ( 1998).

    Article  ADS  CAS  Google Scholar 

  10. Hallam, A. Estimates of the amount and rate of sea-level change across the Rhaetian–Hettangian and Pliensbachian–Toarcian boundaries (latest Triassic to early Jurassic). J. Geol. Soc. Lond. 154, 773– 779 (1997).

    Article  Google Scholar 

  11. Cope, J. C. W. Discussion on estimates of the amount and rate of sea-level change across the Rhaetian–Hettangian and Pliensbachian–Toarcian boundaries (latest Triassic to Early Jurassic). J. Geol. Soc. Lond. 155, 421 (1998).

    Article  Google Scholar 

  12. Norris, R. D. & Röhl, U. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature 401, 775–778 ( 1999).

    Article  ADS  CAS  Google Scholar 

  13. Koppelhus, E. B. & Nielsen, L. H. Palynostratigraphy and palaeoenvironments of the lower to middle Jurassic Bagå Formation of Bornholm, Denmark. Palynology 18, 139 –194 (1994).

    Article  Google Scholar 

  14. Howarth, M. K. The ammonite family Hildoceratidae in the Lower Jurassic of Britain. Part 1. Palaeogr. Soc. Monogr. 145, 1– 106 (1992).

    Google Scholar 

  15. Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and Late Permian mass extinction. Science 272, 452–457 ( 1996).

    Article  ADS  Google Scholar 

  16. Gröcke, D. R., Hesselbo, S. P. & Jenkyns, H. C. Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean–atmosphere chemistry and relation to sea-level change. Geology 27, 155–158 ( 1999).

    Article  ADS  Google Scholar 

  17. Pálfy, J., Parrish, R. R. & Smith, P. L. A U-Pb age from the Toarcian (Lower Jurassic) and its use for time scale calibration through error analysis of biochronologic dating. Earth Planet. Sci. Lett. 146, 659 –675 (1997).

    Article  ADS  Google Scholar 

  18. Duncan, R. A., Hooper, P. R., Rehacek, J., Marsh, J. S. & Duncan, A. R. The timing and duration of the Karoo igneous event, southern Gondwana. J. Geophys. Res. 102, 18127–18138 (1997).

    Article  ADS  Google Scholar 

  19. Ziegler, P. A. Geological Atlas of Western and Central Europe (Shell Internationale Petroleum, The Hague, 1990).

    Google Scholar 

  20. Hesselbo, S. P. & Jenkyns, H. C. in Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P. C. et al.) 560–581 (SEPM, Society for Sedimentary Geology, Tulsa, 1998).

    Google Scholar 

  21. Bjerrum, C. J. Numerical Palaeoceanography Of A Jurassic Narrow Meridional Seaway: Transcontinental Currents And Global Ocean Feedbacks. PhD thesis, Univ. Copenhagen (1999).

    Google Scholar 

  22. Shaffer, G. & Bendtsen, J. Role of the Bering Strait in controlling North Atlantic ocean circulation and climate. Nature 367, 354–357 (1994).

    Article  ADS  Google Scholar 

  23. Dickens, G. R. Methane oxidation during the Late Palaeocene thermal maximum. Bull. Soc. Géol. Fr. 171, 37– 49 (2000).

    CAS  Google Scholar 

  24. Kvenvolden, K. A. in Gas Hydrates: Relevance to World Margin Stability and Climate Change (eds Henriet, J.-P. & Mienert, J.) 9–30 (Geological Society, London, 1998).

    Google Scholar 

  25. Jenkyns, H. C. & Wilson, P. A. Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific Guyots: relics from a Greenhouse Earth. Am. J. Sci. 299, 341 –392 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Fiet, N. Calibrage temporel de l'Aptien et des sous-étage associés par une approche cyclostratigraphique appliquée à la série pélagique de Marches-Ombrie (Italie centrale). Bull. Soc. Géol. Fr. 171, 103–113 (2000).

    Google Scholar 

  27. Jahren, A. H. & Arens, N. C. Methane hydrate dissociation implicated in Aptian OAE events. Geol. Soc. Am. Abs. Progs 30, 53 (1998).

    Google Scholar 

  28. Smith, A. G., Smith, D. G. & Funnell, B. M. Atlas of Mesozoic and Cenozoic Coastlines (Cambridge Univ. Press, Cambridge, UK, 1994).

    Google Scholar 

  29. Jiménez, A. P., Jiménez de Cisneros, C., Rivas, P. & Vera, J. A. The Early Toarcian anoxic event in the westernmost Tethys (Subbetic): Paleogeographic and paleobiogeographic significance. J. Geol. 104, 399–416 (1996).

    Article  ADS  Google Scholar 

  30. Hesselbo, S. P. & Jenkyns, H. C. in Field Geology of the British Jurassic (ed. Taylor, P. D.) 105– 150 (Geological Society, London, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank F. Surlyk and G. Pedersen for help with this study. Useful critical comments were provided by J. Hudson. Palaeoceanographic modelling was carried out by C.J.B. in part while at the Geological Institute, University of Copenhagen. Organic carbon-isotope analyses were carried out at the University of Oxford Radiocarbon Unit thanks to T. O'Connell and M. Humm. D.M. Jones and P. Donohoe helped with Py-GC-MS analysis. Scientific discussion with L. Nielsen, G. Henderson and C. Jones is gratefully acknowledged. D.R.G. is funded by ESSO, C.J.B. by the Danish Natural Science Research Council, and H.S.M.B. by a NERC–industrial consortium (Rapid Global Geological Events project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Hesselbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesselbo, S., Gröcke, D., Jenkyns, H. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000). https://doi.org/10.1038/35019044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019044

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing