Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Protein function in the post-genomic era

Abstract

Faced with the avalanche of genomic sequences and data on messenger RNA expression, biological scientists are confronting a frightening prospect: piles of information but only flakes of knowledge. How can the thousands of sequences being determined and deposited, and the thousands of expression profiles being generated by the new array methods, be synthesized into useful knowledge? What form will this knowledge take? These are questions being addressed by scientists in the field known as ‘functional genomics’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two functional protein networks.
Figure 2: The evolution of the meaning of protein function.

Similar content being viewed by others

References

  1. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  2. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology . Science 282, 2012–2018 (1998).

  3. Chervitz, S. A. et al. Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282, 2022 –2028 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33– 36 (2000).

    Article  CAS  Google Scholar 

  5. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Ito, T. et al. Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl Acad. Sci. USA 97, 1143–1147 ( 2000).

    Article  ADS  CAS  Google Scholar 

  7. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Lashkari, D. A. et al. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl Acad. Sci. USA 94, 13057–13062 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21, 33–37 (1999).

    Article  CAS  Google Scholar 

  10. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863– 14868 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O. & Eisenberg, D. A combined algorithm for genome-wide prediction of protein function. Nature 402, 83–86 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Marcotte, E. M. et al. Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751– 753 (1999).

    Article  CAS  Google Scholar 

  13. Dandekar, T., Snel, B., Huynen, M. & Bork, P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324–328 (1998).

    Article  CAS  Google Scholar 

  14. Overbeek, R., Fonstein, M., D'Souza, M., Pusch, G. D. & Maltsev, N. The use of gene clusters to infer functional coupling. Proc. Natl Acad. Sci. USA 96, 2896–2901 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Enright, A. J., Iliopoulos, I., Kyrpides, N. C. & Ouzounis, C. A. Protein interaction maps for complete genomes based on gene fusion events . Nature 402, 86–90 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D. & Yeates, T. O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl Acad. Sci. USA 96, 4285–4288 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Andrade, M. A. & Valencia, A. Automatic extraction of keywords from scientific text: application to the knowledge domain of protein families. Bioinformatics 14, 600– 607 (1998).

    Article  CAS  Google Scholar 

  18. Kim, S. H. Structural genomics of microbes: an objective. Curr. Opin. Struct. Biol. (in the press).

  19. Xenarios, I. et al. DIP: the Database of Interacting Proteins. Nucleic Acids Res. 28, 289–291 ( 2000).

    Article  CAS  Google Scholar 

  20. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566– 569 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Bork, P. et al. Predicting function: from genes to genomes and back. J. Mol. Biol. 283, 707–725 (1998).

    Article  CAS  Google Scholar 

  22. Huynen, M., Dandekar, T. & Bork, P. Differential genome analysis applied to the species-specific features of Helicobacter pylori. FEBS Lett. 426, 1–5 (1998).

    Article  CAS  Google Scholar 

  23. Hegyi, H. & Gerstein, M. The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J. Mol. Biol. 288, 147– 164 (1999).

    Article  CAS  Google Scholar 

  24. Ouzounis, C. & Kyrpides, N. The emergence of major cellular processes in evolution. FEBS Lett. 390, 119–123 (1996).

    Article  CAS  Google Scholar 

  25. Gaasterland, T. & Ragan, M. A. Constructing multigenome views of whole microbial genomes. Microb. Comp. Genomics 3, 177–192 ( 1998).

    Article  CAS  Google Scholar 

  26. Wu, Q. & Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779–790 ( 1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eisenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenberg, D., Marcotte, E., Xenarios, I. et al. Protein function in the post-genomic era. Nature 405, 823–826 (2000). https://doi.org/10.1038/35015694

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015694

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing