Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging anti-tumour agents

Abstract

Nitric-oxide synthase (NOS) activity has been detected in many human tumours, although its function is unclear. Here we show that exposure of cells to nitric oxide (NO) results in a 4–5-fold increase in expression of the DNA-dependent protein-kinase catalytic subunit (DNA-PKcs), one of the key enzymes involved in repairing double-stranded DNA breaks. This NO-mediated increase in enzymatically active DNA-PK not only protects cells from the toxic effects of NO, but also provides crossprotection against clinically important DNA-damaging agents, such as X-ray radiation, adriamycin, bleomycin and cisplatin. The NO-mediated increase in DNA-PKcs described here demonstrates the presence of a new and highly effective NO-mediated mechanism for DNA repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of NO by EcR293 clone-11 cells.
Figure 2: Expression of DNA-PKcs mRNA.
Figure 3: Expression of DNA-PKcs.
Figure 4: DNA‐PK pulldown peptide assay.
Figure 5: NO-dependent increase in DNA-PKcs promoter activity.
Figure 6: NO-mediated increase in Sp1 binding.
Figure 7: NO-generating cells are protected from DNA-damaging agents.
Figure 8: Cytokine induction of NO or exogenous administration of an NO donor protects cells from DNA damaging agents.

Similar content being viewed by others

References

  1. Moncada, S., Palmer, R. M. & Higgs, E. A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

    CAS  PubMed  Google Scholar 

  2. Knowles, R. G. & Moncada, S. Nitric oxide synthases in mammals. Biochem. J. 298, 249–258 (1994).

    Article  CAS  Google Scholar 

  3. Jenkins, D. C. et al. Human colon cancer cell lines show a diverse pattern of nitric oxide synthase gene expression and nitric oxide generation. Brit. J. Cancer 70, 847–849 (1994).

    Article  CAS  Google Scholar 

  4. Asano, K. et al. Constitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells. Proc. Natl Acad. Sci. USA 91, 10089–10093 (1994).

    Article  CAS  Google Scholar 

  5. Ambs, S. et al. Frequent nitric oxide synthase-2 expression in human adenomas: implication for tumour angiogenesis and colon cancer progression. Cancer Res. 58, 334–341 (1998).

    CAS  PubMed  Google Scholar 

  6. Thomsen, L. L., Sargent, J. M., Williamson, C. J. & Elgie, A. W. Nitric oxide synthase activity in fresh cells from ovarian tumour tissue: relationship of enzyme activity with clinical parameters of patients with ovarian cancer. Biochem. Pharmacol. 56, 1365–1370 (1998).

    Article  CAS  Google Scholar 

  7. Zhao, H. et al. B-cell chronic lymphocytic leukemia cells express a functional inducible nitric oxide synthase displaying anti-apoptotic activity. Blood 92, 1031–1043 (1998).

    CAS  Google Scholar 

  8. Jenkins, D. C. et al. Roles of nitric oxide in tumour growth. Proc. Natl Acad. Sci. USA 92, 4392–4396 (1995).

    Article  CAS  Google Scholar 

  9. Forrester, K. et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc. Natl Acad. Sci. USA 93, 2442–2447 (1996).

    Article  CAS  Google Scholar 

  10. Ambs, S. et al. p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nature Med. 4, 1371–1376 (1998).

    Article  CAS  Google Scholar 

  11. Burney, S., Caulfield, J. L., Niles, J. C., Wishnok, J. S., & Tannenbaum, S. R. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res. 424, 37–49 (1999).

    Article  CAS  Google Scholar 

  12. Smith, G. C. M. & Jackson, S. P. The DNA-dependent protein kinase. Genes Dev. 13, 916–934 (1999).

    Article  CAS  Google Scholar 

  13. No, D., Yao, T. P. & Evans, R. M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl Acad. Sci. USA 93, 3346–3351 (1996).

    Article  CAS  Google Scholar 

  14. Charles, I. G. et al. Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte. Proc. Natl Acad. Sci. USA 90, 11419–11423 (1993).

    Article  CAS  Google Scholar 

  15. Salter, M., Knowles, R. G. & Moncada, S. Widespread tissue distribution, species distribution and changes in activity of Ca(2+)-dependent and Ca(2+)-independent nitric oxide synthases. FEBS Lett. 291, 145–149 (1991).

    Article  CAS  Google Scholar 

  16. Hartley, K. O. et al. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82, 849–856 (1995).

    Article  CAS  Google Scholar 

  17. Song, Q. et al. DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 15, 3238–3246 (1996).

    Article  CAS  Google Scholar 

  18. Finnie, N. J., Gottlieb, T. M., Blunt, T., Jeggo, P. A. & Jackson, S. P. DNA-dependent protein kinase activity is absent in xrs-6 cells: implications for site specific recombination and DNA double strand break repair. Proc. Natl Acad. Sci. USA 92, 320–324 (1995).

    Article  CAS  Google Scholar 

  19. Connelly, M. A., Zhang, H., Kieleczawa, J. & Anderson, C. W. The promoters for human DNA-PKcs (PRKDC) and MCM 4: divergently transcribed genes located at chromosome 8 band q 11. Genomics 47, 71–83 (1998).

    Article  CAS  Google Scholar 

  20. Darius, H. et al. The effects of molsidomine and its metabolite SIN-1 on coronary vessel tone, platelet aggregation, and eicosanoid formation in vitro — inhibition of 12-HPETE biosynthesis. J. Cardiovasc. Pharmacol. 6, 115–121 (1984).

    Article  CAS  Google Scholar 

  21. Courey, A. J. & Tjian, R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887–898 (1988).

    Article  CAS  Google Scholar 

  22. Lees-Miller, S. P. et al. Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science 267, 1183–1185 (1995).

    Article  CAS  Google Scholar 

  23. Izzard, R. A., Jackson, S. P. & Smith, G. C. Competitive and noncompetitive inhibition of the DNA-dependent protein kinase. Cancer Res. 59, 2581–2586 (1999).

    CAS  PubMed  Google Scholar 

  24. Woudstra, E. C., Driessen, C., Konings, A. W. & Kampinga, H. H. DNA damage induction and tumour cell radiosensitivity: PFGE and halo measurements. Int. J. Radiat. Biol. 73, 495–502 (1998).

    Article  CAS  Google Scholar 

  25. Allalunis-Turner, M. J. et al. Isolation of two cell lines from a human malignant glioma specimen differing in sensitivity to radiation and chemotherapeutic drugs. Radiat. Res. 134, 349–354 (1993).

    Article  CAS  Google Scholar 

  26. Muller, C. et al. UV sensitivity and impaired nucleotide excision repair in DNA-dependent protein kinase mutant cells. Nucleic Acids Res. 26, 1382–1389 (1998).

    Article  CAS  Google Scholar 

  27. Shen, H., Schultz, M., Kruh, G. D. & Tew, K. D. Increased expression of DNA-dependent protein kinase confers resistance to adriamycin. Biochimica et Biophysica Acta 1381, 131–138 (1998).

    Article  CAS  Google Scholar 

  28. Muller, C., Christodoulopoulos, G., Salles, B. & Panasci, L. DNA-dependent protein kinase activity correlates with clinical and in vitro sensitivity of chronic lymphocytic leukemia lymphocytes to nitrogen mustards. Blood 92, 2213–2219 (1998).

    CAS  PubMed  Google Scholar 

  29. Suschek, C. V. et al. Nitric oxide fully protects against UVA-induced apoptosis in tight correlation with Bcl-2 upregulation. J. Biol. Chem. 274, 6130–6137 (1999).

    Article  CAS  Google Scholar 

  30. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase-II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  31. Yagle, M. K., Parruti, G., Xu, W., Ponder, B. & Solomon, E. Genetic and physical map of the von Recklinghausen neurofibromatosis (NF1) region on chromosome 17. Proc. Natl Acad. Sci. USA 87, 7255–7259 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Jenkins and S. Jackson for discussions, C. W. Anderson (Brookhaven National Laboratory, New York) for DNA-PKcs promoter–reporter plasmids, R. Tjian (Howard Hughes Medical Institute, Berkeley, Illinois) for pPacSp1 and pPacO plasmids and M. J. Allalunis-Turner for cell lines M059J and M059K. We also thank D. Sheer for help in the use of the X-ray facility at the ICRF, London. This work was supported by a grant from the Medical Research Council.

Correspondence and requests for materials should be addressed to I.G.C.

Supplementary information is available on Nature Cell Biology’s website (http://www.nature.com/ncb) or as paper copy from the London editorial office of Nature Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to lan G. Charles.

Supplementary information

Supplementary information

Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging anti-tumour agents. (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Liu, L., Smith, G. et al. Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging anti-tumour agents. Nat Cell Biol 2, 339–345 (2000). https://doi.org/10.1038/35014028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing