Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromosomal evolution in Saccharomyces

Abstract

The chromosomal speciation model invokes chromosomal rearrangements as the primary cause of reproductive isolation1. In a heterozygous carrier, chromosomes bearing reciprocal translocations mis-segregate at meiosis, resulting in reduced fertility or complete sterility. Thus, chromosomal rearrangements act as a post-zygotic isolating mechanism. Reproductive isolation in yeast is due to post-zygotic barriers, as many species mate successfully but the hybrids are sterile2,3. Reciprocal translocations are thought to be the main form of large-scale rearrangement since the hypothesized duplication of the whole yeast genome 108 years ago4,5. To test the chromosomal speciation model in yeast, we have characterized chromosomal translocations among the genomes of six closely related species in the Saccharomyces ‘sensu stricto’ complex6. Here we show that rearrangements have occurred between closely related species, whereas more distant ones have colinear genomes. Thus, chromosomal rearrangements are not a prerequisite for speciation in yeast and the rate of formation of translocations is not constant. These rearrangements appear to result from ectopic recombination between Ty elements or other repeated sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrophoretic karyotypes of the Saccharomyces ‘sensu stricto’ species.
Figure 2: Phylogenetic relationships between the Saccharomyces cerevisiae ‘sensu stricto’ species.

Similar content being viewed by others

References

  1. White, M. Modes of Speciation (Freeman, San Francisco, 1978).

    Google Scholar 

  2. Naumov, G. Genetic basis for classification and identification of the ascomycetous yeasts. Stud. Mycol. 30, 469–475 (1987).

    Google Scholar 

  3. Hunter, N., Chambers, S. R., Louis, E. J. & Borts, R. H. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 15, 1726–1733 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolfe, K. H. & Schields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Seoighe, C. & Wolfe, K. H. Extent of genomic rearrangement after genome duplication in yeast. Proc. Natl Acad. Sci. USA 95, 4447–4452 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Naumov, G., James, S. A., Louis, E. J., Naumova, E. S. & Roberts, I. N. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int. J. Syst. Bacteriol. (in the press).

  7. James, S. A., Cai, J., Roberts, I. N. & Collins, M. D. A phylogenetic analysis of the genus Saccharomyces based on 18S rDNA gene sequences: description of Saccharomyces kunashirensis sp. nov. and Saccharomyces martiniae sp. nov. Int. J. Syst. Bacteriol. 47, 453–460 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Tamai, Y., Momma, T., Yoshimoto, H. & Kaneko, Y. Co-existence of 2 types of chromosome in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 10, 923–933 (1998).

    Article  Google Scholar 

  9. Ryu, S. L., Murooka, Y. & Kaneko, Y. Reciprocal translocation at duplicated RPL2 loci might cause speciation of Saccharomyces bayanus and Saccharomyces cerevisiae. Curr. Genet. 33, 345–351 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Ryu, S. L., Murooka, Y. & Kaneko, Y. Genomic reorganization between two sibling yeast species, Saccharomyces bayanus and Saccharomyces cerevisiae. Yeast 12, 757–764 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Naumov, G. I., Naumova, E. S., Hagler, A. N., Mendoncahagler, L. C. & Louis, E. J. A new genetically isolated population of the Saccharomyces sensu-stricto complex from Brazil. Antonie Van Leeuwenhoek 67, 351–355 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Naumov, G. I., Naumova, E. S. & Louis, E. J. Two new genetically isolated populations of the Saccharomyces sensu stricto complex from Japan. J. Gen. Appl. Microbiol. 41, 499–505 (1995).

    Article  CAS  Google Scholar 

  13. James, S. A., Collins, M. D. & Roberts, I. N. Use of an rRNA internal transcribed spacer region to distinguish phylogenetically closely related species of the genera Zygosaccharomyces and Torulaspora. Int. J. Syst. Bacteriol. 46, 189–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Takezaki, N., Rzhetsky, A. & Nei, M. Phylogenetic test of the molecular clock and linearized tree. Mol. Biol. Evol. 12, 823–833 (1995).

    CAS  PubMed  Google Scholar 

  15. Loidl, J., Jin, Q. W. & Jantsch, M. Meiotic pairing and segregation of translocation quadrivalents in yeast. Chromosoma 107, 247–254 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Hani, J. & Feldmann, H. tRNA genes and retroelements in the yeast genome. Nucleic Acids Res. 26, 689–696 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boeke, J. D., Eichinger, D. J. & Natsoulis, G. Doubling Ty1 element copy number in Saccharomyces cerevisiae: host genome stability and phenotypic effects. Genetics 129, 1043–1052 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kupiec, M. & Petes, T. D. Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 8, 2942–2954 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rachidi, N., Barre, P. & Blondin, B. Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol. Gen. Genet. 261, 841–850 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Codon, A. C., Benitez, T. & Korhola, M. Chromosomal reorganisation during meiosis of Saccharomyces cerevisiae baker's yeasts. Curr. Genet. 32, 247–259 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Adams, J. & Oeller, P. W. Structure of evolving populations of Saccharomyces cerevisiae adaptive changes are frequently associated with sequence alterations involving mobile elements belonging to the Ty family. Proc. Natl Acad. Sci. USA 83, 7124–7127 (1986).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adams, J., Puskasrozsa, S., Simlar, J. & Wilke, C. M. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr. Genet. 22, 13–19 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Bailis, A. M. & Rothstein, R. A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homologous genes by an excision repair dependent process. Genetics 126, 535–547 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sniegowski, P., Gerrish, P. & Lenski, R. Evolution of high mutation rates in experimental populations of Escherichia coli. Nature 387, 703–705 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Sherman, F., Fink, G. & Hicks, J. Laboratory Course Manual for Methods in Yeast Genetics (Cold Spring Harbour Laboratory, Cold Spring Harbour, 1986).

    Google Scholar 

  26. Louis, E. J. in Methods in Microbiology; Yeast Gene Analysis (eds Truite, M. F. & Brown, A. J. P.) 15–32 (Academic, London, 1998).

    Book  Google Scholar 

  27. Feng, D. F. & Doolittle, R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 35, 351–360 (1987).

    Article  ADS  Google Scholar 

  28. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  29. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).

    Article  PubMed  Google Scholar 

  30. Goddard, M. R. & Burt, A. Recurrent invasion and extinction of a selfish gene. Proc. Natl Acad. Sci. USA 96, 13880–13885 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Borts and S. Chambers for helpful comments on the manuscript. This work was supported by the Biotechnology and Biological Sciences Research Council and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Louis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, G., James, S., Roberts, I. et al. Chromosomal evolution in Saccharomyces. Nature 405, 451–454 (2000). https://doi.org/10.1038/35013058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35013058

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing