Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean

Abstract

During glacial periods, low atmospheric carbon dioxide concentration has been associated with increased oceanic carbon uptake, particularly in the southern oceans. The mechanism involved remains unclear. Because ocean productivity is strongly influenced by nutrient levels, palaeo-oceanographic proxies have been applied to investigate nutrient utilization in surface water across glacial transitions. Here we show that present-day cadmium and phosphorus concentrations in the global oceans can be explained by a chemical fractionation during particle formation, whereby uptake of cadmium occurs in preference to uptake of phosphorus. This allows the reconstruction of past surface water phosphate concentrations from the cadmium/calcium ratio of planktonic foraminifera. Results from the Last Glacial Maximum show similar phosphate utilization in the subantarctic to that of today, but much smaller utilization in the polar Southern Ocean, in a model that is consistent with the expansion of glacial sea ice and which can reconcile all proxy records of polar nutrient utilization. By restricting communication between the ocean and atmosphere, sea ice expansion also provides a mechanism for reduced CO2 release by the Southern Ocean and lower glacial atmospheric CO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cd/P ratio in ocean waters.
Figure 2: Comparison of model predictions of Cd–P fractionation with oceanic data.
Figure 3: Inter-ocean contrasts in Cd/P compared with fractionation model.
Figure 4: Calculation of Cdsw and Psw from glacial–interglacial records of planktonic foraminiferal Cd/Ca.
Figure 5: Modern versus LGM reconstruction of Southern Ocean surface water phosphate.
Figure 6: Holocene/LGM contrasts in nutrient utilization.

Similar content being viewed by others

References

  1. Toggweiler, J. R. & Sarmiento, J. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archaean to Present Geophys. Monogr. Ser. Vol. 32 (eds Sundquist,E. T. & Broecker,W. S.) 163–184 (AGU, Washington DC, 1985).

    Google Scholar 

  2. Mortlock, R. A. et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220– 223 (1991).

    Article  ADS  Google Scholar 

  3. Rosenthal, Y., Dahan, M. & Shemesh, A. Southern Ocean contributions to glacial–interglacial changes of atmospheric pCO2: an assessment of carbon isotope records in diatoms. Paleoceanography 15, 65– 75 (2000).

    Article  ADS  Google Scholar 

  4. De La Rocha, C. L., Brzezinski, M. A., DeNiro, M. J. & Shemesh, A. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680–683 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Sigman, D., Altabet, M. A., Francois, R., McCorkle, D. C. & Gaillard, J.-F. The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14, 118–134 ( 1999).

    Article  ADS  Google Scholar 

  6. Francois, R. et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Kumar, N. et al. Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675– 680 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Anderson, R. F. et al. Late Quaternary changes in productivity of the Southern Ocean. J. Mar. Syst. 17, 497– 514 (1998).

    Article  ADS  Google Scholar 

  9. Kohfeld, K. E., Anderson, R. F. & Lynch-Stieglitz, J. Carbon isotopic disequilibrium in polar planktonic foraminifera and its impact on modern and last glacial maximum reconstructions. Paleoceanography 15, 53 –64 (2000).

    Article  ADS  Google Scholar 

  10. Murnane, R. J. & Stallard, R. F. Germanium/silicon fractionation during biogenic opal formation. Paleoceanography 3, 461–471 ( 1988).

    Article  ADS  Google Scholar 

  11. Bareille, G., Labracherie, M., Mortlock, R. A., Maier-Reimer, E. & Froelich, P. N. A test of (Ge/Si)opal as a palaeorecorder of (Ge/Si)seawater. Geology 26, 179–182 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Francois, R., Bacon, M. P., Altabet, M. A. & Labeyrie, L. D. Glacial/interglacial changes in sediment rain rate in the SW Indian sector of Subantarctic waters as recorded by 230Th, 231Pa, U, and δ15N. Paleoceanography 8, 611–629 (1993).

    Article  ADS  Google Scholar 

  13. Shemesh, A., Macko, S. A., Charles, C. D. & Rau, G. H. Isotopic evidence for reduced productivity in the glacial Southern Ocean. Science 262, 407–410 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Boyle, E. A. Cadmium: Chemical tracer of deepwater paleoceanography. Paleoceanography 3, 471–489 ( 1988).

    Article  ADS  Google Scholar 

  15. Rickaby, R. E. M. & Elderfield, H. Planktonic foraminiferal Cd/Ca: Paleonutrients or paleotemperature. Paleoceanography 14, 293–303 ( 1999).

    Article  ADS  Google Scholar 

  16. de Baar, H. J. W., Saager, P. M., Nolting, R. F. & van der Meer, J. Cadmium versus phosphate in the world ocean. Mar. Chem. 46, 261–281 (1994).

    Article  CAS  Google Scholar 

  17. Loscher, B. M., van der Meer, J., de Baar, H. J. W., Saager, P. M. & de Jong, J. T. M. The global Cd/P relationship in deep ocean waters and the need for accuracy. Mar. Chem. 59, 87–93 ( 1997).

    Article  CAS  Google Scholar 

  18. Yeats, P. A. An isopycnal analysis of cadmium distributions in the Atlantic Ocean. Mar. Chem. 61, 15–23 ( 1998).

    Article  CAS  Google Scholar 

  19. Saager, P. M. On the relationship between trace metals and nutrients in sea water. Thesis, Free Univ. (1994).

  20. Rutgers van der Loeff, M., Helmers, E. & Kattner, G. Continuous transects of cadmium, copper and aluminium in surface waters of the Atlantic Ocean, 50° N to 50° S: Correspondence and contrast with nutrient-like behaviour. Geochim. Cosmochim. Acta 50, 47–61 (1997).

    Article  Google Scholar 

  21. Boyle, E. A., Huested, S. S. & Jones, S. P. On the distribution of copper, nickel and cadmium in the surface waters of the North Atlantic and North Pacific Ocean. J. Geophys. Res. 86, 8048–8066 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Sherrell, R. M. The trace metal geochemistry of suspended oceanic particulate matter. Thesis, MIT (1989).

  23. Rickaby, R. E. M. Planktonic foraminiferal Cd/Ca: a new perspective on South Ocean palaeoproductivity. Thesis, Cambridge Univ. (1999).

  24. Saager, P. M., de Baar, H. J. W. & Howland, R. J. Cd, Zn, Ni and Cu in the Indian Ocean. Deep-Sea Res. 39, 9–35 ( 1992).

    Article  ADS  CAS  Google Scholar 

  25. Frew, R. D. & Hunter, K. A. Cadmium-phosphorus cycling at the subtropical convergence south of New Zealand. Mar. Chem. 51, 223–237 (1995).

    Article  CAS  Google Scholar 

  26. Bruland, K. W., Knauer, G. A. & Martin, J. A. Cadmium in north east Pacific waters. Limnol. Oceanogr. 23, 618–625 (1980).

    Article  ADS  Google Scholar 

  27. Abe, K. & Matsunaga, K. Mechanism controlling Cd and PO 4 concentrations in Funka Bay, Japan. Mar. Chem. 23, 145–152 (1988).

    Article  CAS  Google Scholar 

  28. Price, N. M. & Morel, F. M. M. Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344, 658–660 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Cullen, J. T., Lane, T. W., Morel, F. M. M. & Sherrell, R. M. Modulation of cadmium utilization by phytoplankton by seawater concentration. Nature 402, 165–167.

  30. Boyle, E. A. The role of vertical chemical fractionation in controlling Late Quaternary atmospheric carbon dioxide. J. Geophys. Res. 93, 15701–15714 (1988).

    Article  ADS  Google Scholar 

  31. Keigwin, L. D. & Boyle, E. A. Late Quaternary paleochemistry of high-latitude surface waters. Paleogeogr. Paleoclimatol. Paleoecol. 73, 85–106 ( 1989).

    Article  ADS  Google Scholar 

  32. Rosenthal, Y., Boyle, E. A. & Labeyrie, L. Last glacial maximum paleochemistry and deepwater circulation in the Southern Ocean: Evidence from foraminiferal cadmium. Paleoceanography 12, 787–797 ( 1997).

    Article  ADS  Google Scholar 

  33. Pichon, J.-J. et al. Surface water temperature changes in the high latitudes of the Southern hemisphere over the last glacial-interglacial cycle. Paleoceanography 7, 289–318 (1992).

    Article  ADS  Google Scholar 

  34. Luz, B. Late Pleistocene paleoclimates of the South Pacific based on statistical analysis of planktonic foraminifera. Paleogeogr. Paleoclimatol. Paleoecol. 22, 61–78 ( 1977).

    Article  ADS  Google Scholar 

  35. Zielinski, U., Gersonde, R., Sieger, R. & Utterer, D. Quaternary surface water temperature estimations: Calibration of a diatom transfer function for the Southern Ocean. Paleoceanography 13, 365–383 (1998).

    Article  ADS  Google Scholar 

  36. Jouzel, J. et al. Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period. Nature 364, 411–416 (1993).

    Article  ADS  Google Scholar 

  37. Boyle, E. A. Oceanic chemical distributions during the stage 2 glacial maximum: Cadmium and δ13C evidence compared. Annu. Rev. Earth Planet. Sci. 20, 245–287 (1992).

    Article  ADS  CAS  Google Scholar 

  38. Broecker, W. S. & Henderson, G. M. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography 13, 352–364 ( 1998).

    Article  ADS  Google Scholar 

  39. Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & Murray, J. W. Large changes in oceanic nutrient inventories from glacial-interglacial periods. Nature 376, 755–757 (1995).

    Article  ADS  CAS  Google Scholar 

  40. Rau, G. H., Sullivan, C. W. & Gordon, L. I. δ13C and δ15N variations in Weddell Sea particulate organic matter. Mar. Chem. 35, 355–369 ( 1991).

    Article  CAS  Google Scholar 

  41. Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 ( 1998).

    Article  ADS  CAS  Google Scholar 

  42. Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774– 777 (1998).

    Article  ADS  CAS  Google Scholar 

  43. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological pump in the ocean. Nature 342, 637– 642 (1997).

    Google Scholar 

  44. Arrigo, K. R. et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283 , 365–367 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Crosta, X., Pichon, J.-J. & Burckle, L. H. Application of modern analog technique to marine Antarctic diatoms: Reconstruction of maximum sea-ice extent at the Last Glacial Maximum. Paleoceanography 13, 284– 297 (1998).

    Article  ADS  Google Scholar 

  46. Levitus, S., Burgett, R. & Boyer, T. World Ocean Atlas 1994 Vol. 3 Nutrients (Natl Oceanic Atmos. Admin. Atlas Natl Environ. Satellite Data Inf. Serf. 3, US Dept of Comm., Washington DC, 1994).

    Google Scholar 

  47. Broecker, W. S. An oceanographic explanation for the apparent carbon isotope-cadmium discordancy in the glacial Antarctic. Paleoceanography 8, 137–139 (1993).

    Article  ADS  Google Scholar 

  48. Stephens, B. & Keeling, R. F. The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Eos 80, F79 (1999).

    Google Scholar 

  49. Toggweiler, J. R. Variation of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography 14, 571– 588 (1999).

    Article  ADS  Google Scholar 

  50. Martin, J. H., Fitzwater, S. E, Gordon, R. M., Hunter, C. N. & Tanner, S. J. Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res. 40, 115–134 (1993).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Rosenthal, R. Sherrell and J. Cullen for preprints of their work and N. Shackleton for helpful discussions. This work was supported by NERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Elderfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elderfield, H., Rickaby, R. Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean . Nature 405, 305–310 (2000). https://doi.org/10.1038/35012507

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012507

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing