Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

B and C floral organ identity functions require SEPALLATA MADS-box genes

Abstract

Abnormal flowers have been recognized for thousands of years, but only in the past decade have the mysteries of flower development begun to unfold. Among these mysteries is the differentiation of four distinct organ types (sepals, petals, stamens and carpels), each of which may be a modified leaf1. A landmark accomplishment in plant developmental biology is the ABC model of flower organ identity2,3. This simple model provides a conceptual framework for explaining how the individual and combined activities of the ABC genes produce the four organ types of the typical eudicot flower. Here we show that the activities of the B and C organ-identity genes require the activities of three closely related and functionally redundant MADS-box genes, SEPALLATA1/2/3 (SEP1/2/3). Triple mutant Arabidopsis plants lacking the activity of all three SEP genes produce flowers in which all organs develop as sepals. Thus SEP1/2/3 are a class of organ-identity genes that is required for development of petals, stamens and carpels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models for flower organ identity in Arabidopsis.
Figure 2: Phenotype of sep1 sep2 sep3 triple mutants.
Figure 3: AP3, PI and AG are activated normally in sep1 sep2 sep3 mutants.

Similar content being viewed by others

References

  1. Meyerowitz, E. M., Smyth, D. R. & Bowman, J. L. Abnormal flowers and pattern formation in floral development. Development 106, 209–217 (1989).

    Google Scholar 

  2. Coen, E. S. & Meyerowitz, E. M. The war of the whorls: genetic interactions controlling flower development. Nature 353, 31–37 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Bowman, J. L., Smyth, D. R. & Meyerowitz, E. M. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20 (1991).

    CAS  Google Scholar 

  4. Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. & Sommer, H. Genetic control of flower development: homeotic genes in Antirrhinum majus. Science 250, 931–936 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Drews, G. N., Bowman, J. L. & Meyerowitz, E. M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65, 991–1002 (1991).

    Article  CAS  Google Scholar 

  6. Irish, V. F. & Sussex, I. M. Function of the APETALA-1 gene during Arabidopsis floral development. Plant Cell 2, 741–751 (1990).

    Article  CAS  Google Scholar 

  7. Mandel, M. A., Gustafson-Brown, C., Savidge, B. & Yanofsky, M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273–277 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Jack, T., Brockman, L. L. & Meyerowitz, E. M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell 68, 683–697 (1992).

    Article  CAS  Google Scholar 

  9. Goto, K. & Meyerowitz, E. M. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548–1560 (1994).

    Article  CAS  Google Scholar 

  10. Yanofsky, M. F. et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Jofuku, K. D., den Boer, B. G. W., Van Montagu, M. & Okamuro, J. K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211–1225 (1994).

    Article  CAS  Google Scholar 

  12. Kempin, S. A., Savidge, B. & Yanofsky, M. F. Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267, 522–525 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Ferrándiz, C., Gu, Q., Martienssen, R. & Yanofsky, M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725–734 (2000).

    PubMed  Google Scholar 

  14. Liljegren, S. J. et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766–770 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Ma, H., Yanofsky, M. F. & Meyerowitz, E. M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484–495 (1991).

    Article  CAS  Google Scholar 

  16. Mandel, M. A. & Yanofsky, M. F. The Arabidopsis AGL9 MADS-box gene is expressed in young flower primordia. Sex. Plant Reprod. 11, 22–28 (1998).

    Article  CAS  Google Scholar 

  17. Flanagan, C. A. & Ma, H. Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol. Biol. 26, 581–595 (1994).

    Article  CAS  Google Scholar 

  18. Savidge, B., Rounsley, S. D. & Yanofsky, M. F. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7, 721–733 (1995).

    Article  CAS  Google Scholar 

  19. Tröbner, W. et al. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11, 4693–4704 (1992).

    Article  Google Scholar 

  20. Fan, H. -Y., Hu, Y., Tudor, M. & Ma, H. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 11, 999–1010 (1997).

    Article  Google Scholar 

  21. Davies, B., Egea-Cortines, M., de Andrade Silva, E., Saedler, H. & Sommer, H. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 15, 4330–4343 (1996).

    Article  CAS  Google Scholar 

  22. Egea-Cortines, M., Saedler, H. & Sommer, H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18, 5370–5379 (1999).

    Article  CAS  Google Scholar 

  23. Ambrose, B. A. et al. Molecular and genetic analyses of the Silky1 gene reveals conservation in floral organ specification between eudicots and monocots. Mol. Cell (in the press).

  24. Angenent, G. C., Franken, J., Busscher, M., Weiss, D. & van Tunen, A. J. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33–44 (1994).

    Article  CAS  Google Scholar 

  25. Pnueli, L., Hareven, D., Broday, L., Hurwitz, C. & Lifschitz, E. The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6, 175–186 (1994).

    Article  CAS  Google Scholar 

  26. Kang, H. -G. & An, G. Isolation and characterization of a Rice MADS box gene belonging to the AGL2 gene family. Mol. Cell 7, 45–51 (1997).

    CAS  Google Scholar 

  27. Mouradov, A. et al. Family of MADS-box genes expressed early in male and female reproductive structures of Monterey pine. Plant Physiol. 117, 55–62 (1998).

    Article  CAS  Google Scholar 

  28. Mizukami, Y. & Ma, H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71, 119–131 (1992).

    Article  CAS  Google Scholar 

  29. Krizek, B. A. & Meyerowitz, E. M. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122, 11–22 (1996).

    CAS  PubMed  Google Scholar 

  30. Wisman, E. et al. Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc. Natl Acad. Sci. USA 95, 12432–12437 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bowman for the pi ag double mutant photograph, K. Goto for sharing unpublished results, C. Wiley, C. Kawashima and T. Kawashima for technical assistance, D. Weigel, S. Liljegren, J. Bowman, D. Smyth and E. Meyerowitz for comments on the manuscript; and T. Casper and DuPont for access to pooled T-DNA insertion lines. S.P. was supported in part by the Human Frontiers Science Program Organization, and this work was supported by grants from the National Science Foundation and the National Institutes of Health (M.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Yanofsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelaz, S., Ditta, G., Baumann, E. et al. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203 (2000). https://doi.org/10.1038/35012103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012103

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing