Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Integration of floral inductive signals in Arabidopsis

Abstract

Flowering of Arabidopsis is regulated by a daylength-dependent pathway that accelerates flowering in long days and a daylength-independent pathway that ensures flowering in the absence of inductive conditions1,2,3. These pathways are genetically separable, as there are mutations that delay flowering in long but not short days4. Conversely, mutations that block synthesis of the hormone gibberellin abolish flowering in short days, but have on their own only a minor effect in long days5. A third pathway, the autonomous pathway, probably acts by modulating the other two pathways3. Understanding where and how these pathways are integrated is a prerequisite for understanding why similar environmental or endogenous cues can elicit opposite flowering responses in different plants6,7. In Arabidopsis, floral induction leads ultimately to the upregulation of floral meristem-identity genes such as LEAFY8,9,10,11,12,13, indicating that floral inductive signals are integrated upstream of LEAFY. Here we show that gibberellins activate the LEAFY promoter through cis elements that are different from those that are sufficient for the daylength response, demonstrating that the LEAFY promoter integrates environmental and endogenous signals controlling flowering time.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the LFY promoter.
Figure 2: Histological analysis of GOF9::GUS and GOF9m::GUS activity under different conditions and in different genetic backgrounds.
Figure 3: Long-day-specific complementation of lfy by GOF9m::LFY.

Similar content being viewed by others

References

  1. Koorneef,M., Alonso-Blanco,C., Peeters, A. J. M. & Soppe,W. Genetic control of flowering in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 345–370 (1998).

    Article  Google Scholar 

  2. Piñeiro,M. & Coupland,G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol. 117, 1–8 ( 1998).

    Article  Google Scholar 

  3. Simpson,G. G., Gendall,A. R. & Dean, C. When to switch to flowering. Annu. Rev. Cell Dev. Biol. 15, 519–550 ( 1999).

    Article  CAS  Google Scholar 

  4. Koorneef,M., Hanhart,C. J. & van der Veen, J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57–66 (1991).

    Article  Google Scholar 

  5. Wilson,R. N., Heckman,J. W. & Somerville, C. R. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100, 403–408 (1992).

    Article  CAS  Google Scholar 

  6. Bernier,G., Kinet,J.-M. & Sachs,R. M. The Physiology of Flowering (CRC, Boca Raton, 1981).

    Google Scholar 

  7. Bernier,G. The control of floral evocation and morphogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 175– 219 (1988).

    Article  Google Scholar 

  8. Simon,R., Igeño,M. I. & Coupland, G. Activation of floral meristem identity genes in Arabidopsis. Nature 382, 59– 62 (1996).

    Article  ADS  Google Scholar 

  9. Hempel,F. D. et al. Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124, 3845–3853 (1997).

    CAS  PubMed  Google Scholar 

  10. Blázquez,M. A., Soowal,L., Lee,I. & Weigel,D. LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835–3844 (1997).

    PubMed  Google Scholar 

  11. Blázquez,M. A., Green,R., Nilsson,O., Sussman,M. R. & Weigel, D. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791–800 (1998).

    Article  Google Scholar 

  12. Chen,L., Cheng,J. C., Castle,L. & Sung,Z. R. EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9, 2011–2024 ( 1997).

    Article  CAS  Google Scholar 

  13. Nilsson,O., Lee,I., Blázquez,M. A. & Weigel,D. Flowering-time genes modulate the response to LEAFY activity. Genetics 150, 403–410 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yanofsky,M. Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 167–188 ( 1995).

    Article  CAS  Google Scholar 

  15. Putterill,J., Robson,F., Lee,K., Simon,R. & Coupland,G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847–857 (1995).

    Article  CAS  Google Scholar 

  16. Sung,Z. R., Belachew,A., Schunong,B. & Bertrand-Garcia,R. EMF , an Arabidopsis gene required for vegetative shoot development. Science 258, 1645–1647 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Yang,C.-H., Chen,L.-J. & Sung,Z. R. Genetic regulation of shoot development in Arabidopsis : role of the EMF genes. Dev. Biol. 169, 421–435 (1995).

    Article  CAS  Google Scholar 

  18. Urao,T., Yamaguchi-Shinozaki,K., Urao, S. & Shinozaki,K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5, 1529–1539 (1993).

    Article  CAS  Google Scholar 

  19. Wang,Z. Y. et al. A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9, 491–507 (1997).

    Article  CAS  Google Scholar 

  20. Ruiz-García,L. et al. Different roles of flowering time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9, 1921–1934 (1997).

    Article  Google Scholar 

  21. Kardailsky,I. et al. Activation tagging of the floral inducer FT. Science 286, 1962–1965 ( 1999).

    Article  CAS  Google Scholar 

  22. Kobayashi,Y., Kaya,H., Goto,K., Iwabuchi,M. & Araki,T. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960– 1962 (1999).

    Article  CAS  Google Scholar 

  23. Mandel,M. A. & Yanofsky,M. F. A gene triggering flower development in Arabidopsis. Nature 377, 522– 524 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Liljegren,S. J., Gustafson-Brown,C., Pinyopich, A., Ditta,G. S. & Yanofsky,M. F. Interactions among APETALA1 , LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11, 1007–1018 (1999).

    Article  CAS  Google Scholar 

  25. Schultz,E. A. & Haughn,G. W. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3, 771–781 ( 1991).

    Article  Google Scholar 

  26. Weigel,D., Alvarez,J., Smyth,D. R., Yanofsky,M. F. & Meyerowitz, E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843– 859 (1992).

    Article  CAS  Google Scholar 

  27. Huala,E. & Sussex,I. M. LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell 4, 901–913 ( 1992).

    Article  Google Scholar 

  28. Bechtold,N. & Pelletier,G. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259– 266 (1998).

    CAS  PubMed  Google Scholar 

  29. McBride,K. E. & Summerfelt,K. R. Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 14, 269–276 ( 1990).

    Article  CAS  Google Scholar 

  30. Hajdukiewicz,P., Svab,Z. & Maliga,P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Soowal for initial promoter deletion constructs; V. Hedquist and J. T. Nguyen for technical assistance; S. Liljegren, M. Yanofsky, I. Igeño, G. Coupland and the NSF-supported Arabidopsis stock centre for material; G. Gocal and the Weigel lab for discussion; and J. H. Ahn, J. Carbonell, C. Fankhauser, G. Gocal, S. Liljegren, M. Ng, O. Nilsson and F. Parcy for comments on the manuscript. This work was supported by fellowships from the Spanish Ministry of Education and the HFSPO to M.A.B., and by grants from the NSF and HFSPO to D.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Weigel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blázquez, M., Weigel, D. Integration of floral inductive signals in Arabidopsis. Nature 404, 889–892 (2000). https://doi.org/10.1038/35009125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35009125

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing