Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NAK is an IκB kinase-activating kinase

Abstract

Phosphorylation of IκB by the IκB kinase (IKK) complex is a critical step leading to IκB degradation and activation of transcription factor NF-κB1. The IKK complex contains two catalytic subunits, IKKα and IKKβ, the latter being indispensable for NF-κB activation by pro-inflammatory cytokines2,3,4,5,6,7. Although IKK is activated by phosphorylation of the IKKβ activation loop8, the physiological IKK kinases that mediate responses to extracellular stimuli remain obscure1,9. Here we describe an IKK-related kinase, named NAK (NF-κB-activating kinase), that can activate IKK through direct phosphorylation. NAK induces IκB degradation and NF-κB activity through IKKβ. Endogenous NAK is activated by phorbol ester tumour promoters and growth factors, whereas catalytically inactive NAK specifically inhibits activation of NF-κB by protein kinase C-ε (PKCε). Thus, NAK is an IKK kinase that may mediate IKK and NF-κB activation in response to growth factors that stimulate PKCε activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and expression of NAK.
Figure 2: NAK induces phosphorylation and ubiquitination of IκBα through activation of IKKβ.
Figure 3: NAK activates NF-κB.
Figure 4: Endogenous NAK is activated by PMA and PDGF and is not part of the IKK complex.

Similar content being viewed by others

References

  1. Karin,M. The beginning of the end: IκB kinase (IKK) and NF-κB activation. J. Biol. Chem. 274, 27339–27342 (1999).

    Article  CAS  Google Scholar 

  2. Hu,Y. et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 284, 316–320 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Takeda,K. et al. Limb and skin abnormalities in mice lacking IKKα. Science 284, 313–316 ( 1999).

    Article  ADS  CAS  Google Scholar 

  4. Tanaka,M. et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 10 , 421–429 (1999).

    Article  CAS  Google Scholar 

  5. Li,Q., Van Antwerp,D., Mercurio, F., Lee,K.-F. & Verma,I. M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284, 321–325 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Li,Q. et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev. 13, 1322–1328 (1999).

    Article  CAS  Google Scholar 

  7. Li,Z. W. et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J. Exp. Med. 189, 1839–1845 ( 1999).

    Article  CAS  Google Scholar 

  8. Delhase,M., Hayakawa,M., Chen,Y. & Karin,M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 284, 309–313 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Karin,M. & Delhase,M. JNK or IKK, AP-1 or NF-κB, which are the targets for MEK kinase 1 action. Proc. Natl Acad. Sci. USA 95, 9067–9069 ( 1998).

    Article  ADS  CAS  Google Scholar 

  10. Shimada,T. et al. IKK-i, a novel lipopolysaccharide-inducible kinase that is related to IkappaB kinases. Int. Immunol. 8, 1357–1362 (1999).

    Article  Google Scholar 

  11. Ling,L., Cao,Z. & Goeddel,D. V. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl Acad. Sci. (USA) 95, 3792–3797 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Brockman,J. A. et al. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15, 2809–2818 ( 1995).

    Article  CAS  Google Scholar 

  13. Brown,K., Gerstberger,S., Carlson,L., Franzoso,G. & Siebenlist,U. Control of IκB-α proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1488 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Traencker,E. B.-M. et al. Phosphorylation of human IκB-α on serines 32 and 36 controls IκB-α proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14, 2876– 2883 (1995).

    Article  Google Scholar 

  15. DiDonato,J. A. et al. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16, 1295–1304 (1996).

    Article  CAS  Google Scholar 

  16. Yaron,A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590– 594 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Hatakeyama,S. et al. Ubiquitin-dependent degradation of IκBα is mediated by a ubiquitin ligase Skp1/Cullin/F-box protein FWD1. Proc. Natl Acad. Sci. USA 96, 3859–3863 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Baeuerle,P. A. & Baltimore,D. NF-κB: ten years after. Cell 87, 13– 20 (1996).

    Article  CAS  Google Scholar 

  19. Verma,I. M., Stevenson,J. K., Schwarz, E. M., Van Antwerp,D. & Miyamoto,S. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9, 2723–2735 (1995).

    Article  CAS  Google Scholar 

  20. Baldwin,A. S. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).

    Article  CAS  Google Scholar 

  21. Barnes,P. J. & Karin,M. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066–1071 ( 1997).

    Article  CAS  Google Scholar 

  22. Nishizuka,Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607– 614 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Gray,M. O., Karliner,J. S. & Mochly-Rosen, D. A selective ε-protein kinase C antagonist inhibits protection of cardiac myocytes from hypoxia-induced cell death. J. Biol. Chem. 272, 30945–30951 (1997).

    Article  CAS  Google Scholar 

  24. Mayne,G. C. & Murray,A. W. Evidence that protein kinase Cε mediates phorbol ester inhibition of calphostin C- and tumor necrosis factor-α-induced apoptosis in U937 histiocytic lymphoma cells. J. Biol. Chem. 273, 24115–24121 (1998).

    Article  CAS  Google Scholar 

  25. Liu,Z. G., Hsu,H., Goeddel,D. V. & Karin,M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87, 565–576 (1996).

    Article  CAS  Google Scholar 

  26. Pomerantz,J. L. & Baltimore,D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694– 6704 (1999).

    Article  CAS  Google Scholar 

  27. Moriya,S. et al. Platelet-derived growth factor activates protein kinase Cε through redundant and independent signaling pathways involving phospholipase Cγ or phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 93, 151–155 ( 1996).

    Article  ADS  CAS  Google Scholar 

  28. Suemori,H. et al. A mouse embryonic stem cell line showing pluripotency of differentiation in early embryos and ubiquitous beta-galactosidase expression. Cell Differ. Dev. 29, 181–186 (1990).

    Article  CAS  Google Scholar 

  29. DiDonato,J. A., Hayakawa,M., Rothwarf,D. M., Zandi,E. & Karin,M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388, 548–554 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Werlen,G., Jacinto,E., Xia,Y. & Karin,M. Calcineurin preferentially synergizes with PKC-theta to activate JNK and IL-2 promoter in T lymphocytes. EMBO J. 17, 3101–3111 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Rothwarf for discussions and help with the IKK activation and association experiments, K. Tsujimura, Y. Obata and T. Takahashi for generating anti-NAK antibody, and M. Shirane for immunohistochemical study. This work was supported by the Ministry of Education, Science, Sports, and Culture of Japan, and the Ministry of Health and Welfare of Japan. Research in M.K. lab was supported by grants from the National Institute of Health (NIH) and the Department of Energy. M.K. is an American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nakanishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tojima, Y., Fujimoto, A., Delhase, M. et al. NAK is an IκB kinase-activating kinase. Nature 404, 778–782 (2000). https://doi.org/10.1038/35008109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008109

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing