Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards a molecular understanding of adaptive thermogenesis

Abstract

Obesity results when energy intake exceeds energy expenditure. Naturally occurring genetic mutations, as well as ablative lesions, have shown that the brain regulates both aspects of energy balance and that abnormalities in energy expenditure contribute to the development of obesity. Energy can be expended by performing work or producing heat (thermogenesis). Adaptive thermogenesis, or the regulated production of heat, is influenced by environmental temperature and diet. Mitochondria, the organelles that convert food to carbon dioxide, water and ATP, are fundamental in mediating effects on energy dissipation. Recently, there have been significant advances in understanding the molecular regulation of energy expenditure in mitochondria and the mechanisms of transcriptional control of mitochondrial genes. Here we explore these developments in relation to classical physiological views of adaptive thermogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermodynamic perspective of energy expenditure.
Figure 2: Mitochondrial energy metabolism.
Figure 3: Coupling of reactions in energy metabolism.
Figure 4
Figure 5: Pathway for β-adrenergic activation of thermogenesis in brown adipocytes.

Similar content being viewed by others

References

  1. Hart, J. S., Heroux, O. & Depocas, F. Cold acclimation and the electromyogram of unanesthetized rats. J. Appl. Physiol. 9, 404– 408 (1956).

    Article  CAS  PubMed  Google Scholar 

  2. Davis, T. R. A., Johnston, D. R., Bell, F. C. & Cremer, B. J. Regulation of shivering and nonshivering heat production during acclimation of rats. Am. J. Physiol. 198, 471– 475 (1960).

    Article  CAS  PubMed  Google Scholar 

  3. Foster, D. O. & Frydman, M. L. Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can. J. Physiol. Pharmacol. 57, 257–270 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Dauncey, M. J. Influence of mild cold on 24 h energy expenditure, resting metabolism and diet-induced thermogenesis. Br. J. Nutr. 45, 257–267 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Blaxter, K. Energy Metabolism in Animals and Man (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  6. Leibel, R. L., Rosenbaum, M. & Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 332, 621– 628 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Sims, E. A. & Danforth, E. Jr Expenditure and storage of energy in man. J. Clin. Invest. 79, 1019–1025 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shibata, H. & Bukowiecki, L. J. Regulatory alterations of daily energy expenditure induced by fasting or overfeeding in unrestrained rats. J. Appl. Physiol. 63, 465– 470 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Levine, J. A., Eberhardt, N. L. & Jensen, M. D. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283, 212– 214 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Bouchard, C. et al. The response to long-term overfeeding in identical twins. N. Engl. J. Med. 322, 1477–1482 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Kevonian, A. V., Vander Tuig, J. G. & Romsos, D. R. Consumption of a low protein diet increases norepinephrine turnover in brown adipose tissue of adult rats. J. Nutr. 114, 543–549 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Rothwell, N. J. & Stock, M. J. Effect of environmental temperature on energy balance and thermogenesis in rats fed normal or low protein diets. J. Nutr. 117, 833– 837 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Landsberg, L., Saville, M. E. & Young, J. B. Sympathoadrenal system and regulation of thermogenesis . Am. J. Physiol. 247, E181–E189 ( 1984).

  14. Thomas, S. A. & Palmiter, R. D. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 387, 94–97 ( 1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Elmquist, J. K., Elias, C. F. & Saper, C. B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22, 221– 232 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Himms-Hagen, J. Brown adipose tissue thermogenesis and obesity. Prog. Lipid Res. 28, 67–115 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  17. al-Adsani, H., Hoffer, L. J. & Silva, J. E. Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacement. J. Clin. Endocrinol. Metab. 82, 1118– 1125 (1997).

    CAS  PubMed  Google Scholar 

  18. Brand, M. D. et al. The significance and mechanism of mitochondrial proton conductance . Int. J. Obes. Relat. Metab. Disord. 23( Suppl. 6), S4–S11 (1999 ).

    Article  CAS  PubMed  Google Scholar 

  19. Silva, J. E. Thyroid hormone control of thermogenesis and energy balance. Thyroid 5, 481–492 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  20. Almeida, N. G., Levitsky, D. A. & Strupp, B. Enhanced thermogenesis during recovery from diet-induced weight gain in the rat. Am. J. Physiol. 271, R1380–R1387 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 ( 1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Legradi, G., Emerson, C. H., Ahima, R. S., Flier, J. S. & Lechan, R. M. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology 138, 2569–2576 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  23. Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  24. Kadenbach, B. et al. Regulation of energy transduction and electron transfer in cytochrome c oxidase by adenine nucleotides. J. Bioenerg. Biomembr. 30, 25–33 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  25. Kozak, L. P., Kozak, U. C. & Clarke, G. T. Abnormal brown and white fat development in transgenic mice overexpressing glycerol 3-phosphate dehydrogenase. Genes Dev. 5, 2256–2264 ( 1991).

    Article  Google Scholar 

  26. Nicholls, D. G. & Locke, R. M. Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1– 64 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Klingenberg, M. & Huang, S. G. Structure and function of the uncoupling protein from brown adipose tissue. Biochim. Biophys. Acta 1415, 271–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90– 94 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Fleury, C. et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia . Nature Genet. 15, 269– 272 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Gimeno, R. E. et al. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes 46, 900–906 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  31. Boss, O. et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408, 39–42 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Vidal-Puig, A., Solanes, G., Grujic, D., Flier, J. S. & Lowell, B. B. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem. Biophys. Res. Commun. 235, 79–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Gong, D. W., He, Y., Karas, M. & Reitman, M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J. Biol. Chem. 272, 24129–24132 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Hinz, W., Faller, B., Gruninger, S., Gazzotti, P. & Chiesi, M. Recombinant human uncoupling protein-3 increases thermogenesis in yeast cells. FEBS Lett. 448, 57–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, C. Y., Hagen, T., Mootha, V. K., Slieker, L. J. & Lowell, B. B. Assessment of uncoupling activity of uncoupling protein 3 using a yeast heterologous expression system. FEBS Lett. 449, 129–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Jaburek, M. et al. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J. Biol. Chem. 274, 26003 –26007 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Sanchis, D. et al. BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J. Biol. Chem. 273, 34611–34615 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Mao, W. et al. UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett. 443 , 326–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Boss, O. et al. Tissue-dependent upregulation of rat uncoupling protein-2 expression in response to fasting or cold. FEBS Lett. 412, 111–114 (1997).

    Article  ADS  PubMed  Google Scholar 

  40. Weigle, D. S. et al. Elevated free fatty acids induce uncoupling protein 3 expression in muscle: a potential explanation for the effect of fasting. Diabetes 47, 298–302 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  41. Prusiner, S. B., Cannon, B., Ching, T. M. & Lindberg, O. Oxidative metabolism in cells isolated from brown adipose tissue. 2. Catecholamine regulated respiratory control. Eur. J. Biochem. 7, 51– 57 (1968).

    Article  CAS  PubMed  Google Scholar 

  42. Bukowiecki, L. J., Follea, N., Lupien, J. & Paradis, A. Metabolic relationships between lipolysis and respiration in rat brown adipocytes. The role of long chain fatty acids as regulators of mitochondrial respiration and feedback inhibitors of lipolysis. J. Biol. Chem. 256, 12840–12848 (1981).

    CAS  PubMed  Google Scholar 

  43. Jezek, P. et al. Fatty acid cycling mechanism and mitochondrial uncoupling proteins . Biochim. Biophys. Acta 1365, 319– 327 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Arch, J. R. et al. Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309, 163– 165 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Strosberg, A. D. & Pietri-Rouxel, F. Function and regulation of the beta 3-adrenoceptor. Trends Pharmacol. Sci. 17, 373–381 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  46. Susulic, V. S. et al. Targeted disruption of the beta 3-adrenergic receptor gene . J. Biol. Chem. 270, 29483– 29492 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Champigny, O. et al. Beta 3-adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs. Proc. Natl Acad. Sci. USA 88, 10774– 10777 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fisher, M.H. et al. A selective human beta3 adrenergic receptor agonist increases metabolic rate in rhesus monkeys. J. Clin. Invest. 101, 2387–2393 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garruti, G. & Ricquier, D. Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int. J. Obes. Relat. Metab. Disord. 16, 383– 390 (1992).

    CAS  PubMed  Google Scholar 

  50. Himms-Hagen, J. et al. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am. J. Physiol. 266, R1371–1382 ( 1994).

    CAS  PubMed  Google Scholar 

  51. Collins, S., Daniel, K. W., Petro, A. E. & Surwit, R. S. Strain-specific response to beta 3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 138, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Guerra, C., Koza, R. A., Yamashita, H., Walsh, K. & Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity . J. Clin. Invest. 102, 412– 420 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Collins, S. et al. Role of leptin in fat regulation. Nature 380, 677 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100, 270–278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scarpace, P. J., Matheny, M., Pollock, B. H. & Tumer, N. Leptin increases uncoupling protein expression and energy expenditure. Am. J. Physiol. 273, E226–E230 (1997).

    CAS  PubMed  Google Scholar 

  56. Satoh, N. et al. Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system. Neurosci. Lett. 249, 107–110 (1998).

    CAS  PubMed  Google Scholar 

  57. Cusin, I. et al. Chronic central leptin infusion enhances insulin-stimulated glucose metabolism and favors the expression of uncoupling proteins. Diabetes 47, 1014–1019 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  58. Champigny, O. & Ricquier, D. Effects of fasting and refeeding on the level of uncoupling protein mRNA in rat brown adipose tissue: evidence for diet-induced and cold-induced responses. J. Nutr. 120, 1730–1736 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740 –742 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Melnyk, A. & Himms-Hagen, J. Temperature-dependent feeding: lack of role for leptin and defect in brown adipose tissue-ablated obese mice . Am. J. Physiol. 274, R1131– 1135 (1998).

    CAS  PubMed  Google Scholar 

  61. Ravussin, E. et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med. 318, 467– 472 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Roberts, S. B., Savage, J., Coward, W. A., Chew, B. & Lucas, A. Energy expenditure and intake in infants born to lean and overweight mothers. N. Engl. J. Med. 318, 461–466 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Zurlo, F., Larson, K., Bogardus, C. & Ravussin, E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J. Clin. Invest. 86, 1423–1427 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simonsen, L., Bulow, J., Madsen, J. & Christensen, N. J. Thermogenic response to epinephrine in the forearm and abdominal subcutaneous adipose tissue. Am. J. Physiol. 263, E850– E855 (1992).

    CAS  PubMed  Google Scholar 

  65. Gugneja, S., Virbasius, C. M. & Scarpulla, R. C. Nuclear respiratory factors 1 and 2 utilize similar glutamine-containing clusters of hydrophobic residues to activate transcription . Mol. Cell. Biol. 16, 5708– 5716 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Virbasius, J. V. & Scarpulla, R. C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl. Acad. Sci. USA 91, 1309–1313 ( 1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Villena, J. A. et al. Regulation of mitochondrial biogenesis in brown adipose tissue: nuclear respiratory factor-2/GA-binding protein is responsible for the transcriptional regulation of the gene for the mitochondrial ATP synthase beta subunit. Biochem. J. 331, 121–127 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Demonacos, C. V. et al. Mitochondrial genes as sites of primary action of steroid hormones. Steroids 61, 226– 232 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Cassard-Doulcier, A. M. et al. Tissue-specific and beta-adrenergic regulation of the mitochondrial uncoupling protein gene: control by cis-acting elements in the 5′-flanking region. Mol. Endocrinol. 7, 497– 506 (1993).

    CAS  PubMed  Google Scholar 

  70. Kozak, U. C. et al. An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol. Cell. Biol. 14, 59–67 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cummings, D. E. et al. Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A. Nature 382, 622–626 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Sears, I. B., MacGinnitie, M. A., Kovacs, L. G. & Graves, R. A. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol. Cell. Biol. 16, 3410–3419 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Foellmi-Adams, L. A., Wyse, B. M., Herron, D., Nedergaard, J. & Kletzien, R. F. Induction of uncoupling protein in brown adipose tissue. Synergy between norepinephrine and pioglitazone, an insulin-sensitizing agent. Biochem. Pharmacol. 52, 693– 701 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Tai, T. A. C. et al. Activation of the nuclear receptor peroxisome proliferator-activated receptor gamma promotes brown adipocyte differentiation. J. Biol. Chem. 271, 29909–29914 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  75. Brun, S. et al. Activators of peroxisome proliferator-activated receptor-alpha induce the expression of the uncoupling protein-3 gene in skeletal muscle: a potential mechanism for the lipid intake-dependent activation of uncoupling protein-3 gene expression at birth. Diabetes 48, 1217–1222 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Aubert, J. et al. Up-regulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells. Biochem. Biophys. Res. Commun. 238, 606–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829– 839 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Boss, O. et al. Role of the beta(3)-adrenergic receptor and/or a putative beta(4)-adrenergic receptor on the expression of uncoupling proteins and peroxisome proliferator-activated receptor-gamma coactivator-1. Biochem. Biophys. Res. Commun. 261, 870–876 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Hosoi, Y. et al. Expression and regulation of type II iodothyronine deiodinase in cultured human skeletal muscle cells. J. Clin. Endocrinol. Metab. 84, 3293–3300 ( 1999).

    CAS  PubMed  Google Scholar 

  81. Encke, D., Ely, M., Heldmaier, G. & Klaus, S. Physiological approach to maturation of brown adipocytes in primary cell culture. Biochim. Biophys. Acta 1357, 339–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Bartha, T. et al. Characterization of the 5′-flanking and 5′-untranslated regions of the cyclic adenosine 3′,5′-monophosphate-responsive human type 2 iodothyronine deiodinase gene. Endocrinology 141, 229–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Porter, R. K. & Brand, M. D. Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate. Nature 362, 628–630 ( 1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Chance, B. & Williams, C. M. J. Biol. Chem. 217, 405–427 (1955).

    Google Scholar 

  85. Mitchell, P. Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206, 1148–1159 ( 1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Balaban, R. S. Regulation of oxidative phosphorylation in the mammalian cell. Am. J. Physiol. 258, C377–C389 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Hochachka, P. W. The metabolic implications of intracellular circulation. Proc. Natl Acad. Sci. USA 96, 12233–12239 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. McCormack, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391– 425 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Brown, G. C. Control of respiration and ATP synthesis in mammalian mitochondria and cells . Biochem. J. 284, 1–13 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Block, B. A. Thermogenesis in muscle. Annu. Rev. Physiol. 56, 535–577 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. O'Brien, J. & Block, B. A. Effects of Ca2+ on oxidative phosphorylation in mitochondria from the thermogenic organ of marlin. J. Exp. Biol. 199, 2679– 2687 (1996).

    CAS  PubMed  Google Scholar 

  92. Denborough, M. Malignant hyperthermia. Lancet 352, 1131 –1136 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Dumonteil, E., Barre, H. & Meissner, G. Expression of sarcoplasmic reticulum Ca2+ transport proteins in cold-acclimating ducklings. Am. J. Physiol. 269, C955–C960 ( 1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bradford B. Lowell or Bruce M. Spiegelman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowell, B., Spiegelman, B. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000). https://doi.org/10.1038/35007527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35007527

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing