Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The influence of Antarctic sea ice on glacial–interglacial CO2 variations

Abstract

Ice-core measurements indicate that atmospheric CO2 concentrations during glacial periods were consistently about 80 parts per million lower than during interglacial periods1. Previous explanations for this observation2,3,4,5,6,7,8,9 have typically had difficulty accounting for either the estimated glacial O2 concentrations in the deep sea, 13C/12C ratios in Antarctic surface waters, or the depth of calcite saturation; also lacking is an explanation for the strong link between atmospheric CO2 and Antarctic air temperature1. There is growing evidence that the amount of deep water upwelling at low latitudes is significantly overestimated in most ocean general circulation models10,11 and simpler box models previously used to investigate this problem. Here we use a box model with deep-water upwelling confined to south of 55 °S to investigate the glacial–interglacial linkages between Antarctic air temperature and atmospheric CO2 variations. We suggest that low glacial atmospheric CO2 levels might result from reduced deep-water ventilation associated with either year-round Antarctic sea-ice coverage, or wintertime coverage combined with ice-induced stratification during the summer. The model presented here reproduces 67 parts per million of the observed glacial–interglacial CO2 difference, as a result of reduced air–sea gas exchange in the Antarctic region, and is generally consistent with the additional observational constraints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solution from our atmosphere–ocean model for a best-guess modern-preindustrial state.
Figure 2: Steady-state model solutions for different ice coverages south of the Antarctic Polar Front (APF).

Similar content being viewed by others

References

  1. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Sarmiento, J. L. & Toggweiler, J. R. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308, 621–624 ( 1984).

    Article  ADS  CAS  Google Scholar 

  3. Siegenthaler, U. & Wenk, T. Rapid atmospheric CO2 variations and ocean circulation. Nature 308, 624–626 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Knox, F. & McElroy, M. B. Changes in atmospheric CO 2: Influence of the marine biota at high latitude. J. Geophys. Res. 89, 4629–4637 ( 1984).

    Article  ADS  CAS  Google Scholar 

  5. Martin, J. H. Glacial–interglacial CO2 change: The iron hypothesis. Paleoceanography 5, 1–13 (1990).

    Article  ADS  Google Scholar 

  6. Broecker, W. S. & Henderson, G. M. The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography 13, 352–364 ( 1998).

    Article  ADS  Google Scholar 

  7. Opdyke, B. N. & Walker, J. C. G. Return of the coral reef hypothesis: Basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2. Geology 20, 733– 736 (1982).

    Article  ADS  Google Scholar 

  8. Boyle, E. A. The role of vertical chemical fractionation in controlling Late Quaternary atmospheric carbon dioxide. J. Geophys. Res. 93, 15701–15714 (1988).

    Article  ADS  Google Scholar 

  9. Archer, D. & Maier–Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 ( 1994).

    Article  ADS  CAS  Google Scholar 

  10. Toggweiler, J. R. & Samuels, B. in The Global Carbon Cycle (ed. Heimann, M.) 333–366 (Springer, Berlin, 1993).

    Book  Google Scholar 

  11. Gnanadesikan, A. & Toggweiler, J. R. Constraints placed by silicon cycling on vertical exchange in general circulation models. Geophys. Res. Lett. 26, 1865– 1868 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Charles, C. D. & Fairbanks, R. G. in Geological History of the Polar Oceans: Arctic Versus Antarctic (eds Bleil, U. & Thiede, J.) 519–538 (Kluwer Academic, Dordrecht, 1990).

    Book  Google Scholar 

  13. Boyle, E. A. Cadmium and δ13C paleochemical ocean distributions during the Stage 2 glacial maximum. Annu. Rev. Earth Planet. Sci. 20, 245–287 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Toggweiler, J. R. & Sarmiento, J. L. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 163– 184 (American Geophysical Union, Washington DC, 1985 ).

    Google Scholar 

  15. Marino, B. M., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357, 461– 466 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Robbins, P. E. & Toole, J. M. The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean. Deep-Sea Res. 44, 879– 906 (1997).

    Article  CAS  Google Scholar 

  17. Broecker, W. S. et al. How much deep water is formed in the Southern Ocean? J. Geophys. Res. 103, 15833–15843 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Tomczak, M. & Godfrey, J. S. Regional Oceanography: An Introduction 67–87 (Pergamon, Oxford, 1994).

    Book  Google Scholar 

  19. Molinelli, E. J. The Antarctic influence on Antarctic Intermediate Water. J. Mar. Res. 39, 267–293 ( 1981).

    Google Scholar 

  20. McCartney, M. S. in A Voyage of Discovery (ed. Angel, M.) 103– 119 (Pergamon, Oxford, 1977).

    Google Scholar 

  21. Berger, W. H. Deep-sea carbonate and the deglaciation preservation spike in pteropods and foraminifera. Nature 269, 301– 304 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Broecker, W. S. An oceanographic explanation for the apparent carbon isotope–cadmium discordancy in the glacial Antarctic? Paleoceanography 8, 137–139 (1993).

    Article  ADS  Google Scholar 

  23. Broecker, W. S. & Peng, T.-H. Greenhouse Puzzles 2nd edn (Eldigio, Palisades, New York, 1998).

    Google Scholar 

  24. Guilderson, T. P., Fairbanks, R. G. & Rubinstone, J. L. Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change. Science 263, 663–665 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Smith, H. J., Fischer, H., Wahlen, M., Mastroianni, D. & Deck, B. Dual modes of the carbon cycle since the Last Glacial Maximum. Nature 400, 248– 250 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Cooke, D. W. & Hays, J. D. in Antarctic Geoscience: Symposium on Antarctic Geology and Geophysics (ed. Craddock, C.) 1017– 1025 (University of Wisconsin Press, Madison, Wisconsin, 1982).

    Google Scholar 

  27. Crosta, X., Pichon, J.-J. & Burckle, L. H. Reappraisal of Antarctic seasonal sea-ice at the Last Glacial Maximum. Geophys. Res. Lett. 26, 1865–1868 (1999).

    Article  Google Scholar 

  28. François, R. et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997).

    Article  ADS  Google Scholar 

  29. Toggweiler, J. R. Variation of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography 14, 571– 588 (1999).

    Article  ADS  Google Scholar 

  30. Broecker, W. S., Takahashi, T. & Takahashi, T. Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity, and initial phosphate concentration. J. Geophys. Res. 90, 6925– 6939 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Toggweiler, J. Sarmiento, C. Charles and J. Severinghaus for helpful discussions. This work was supported by the National Science Foundation and the Achievement Rewards for College Scientists Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britton B. Stephens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephens, B., Keeling, R. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000). https://doi.org/10.1038/35004556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35004556

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing