Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional regeneration of sensory axons into the adult spinal cord

Abstract

The arrest of dorsal root axonal regeneration at the transitional zone between the peripheral and central nervous system has been repeatedly described since the early twentieth century1. Here we show that, with trophic support to damaged sensory axons, this regenerative barrier is surmountable. In adult rats with injured dorsal roots, treatment with nerve growth factor (NGF), neurotrophin-3 (NT3) and glial-cell-line-derived neurotrophic factor (GDNF), but not brain-derived neurotrophic factor (BDNF), resulted in selective regrowth of damaged axons across the dorsal root entry zone and into the spinal cord. Dorsal horn neurons were found to be synaptically driven by peripheral nerve stimulation in rats treated with NGF, NT3 and GDNF, demonstrating functional reconnection. In behavioural studies, rats treated with NGF and GDNF recovered sensitivity to noxious heat and pressure. The observed effects of neurotrophic factors corresponded to their known actions on distinct subpopulations of sensory neurons. Neurotrophic factor treatment may thus serve as a viable treatment in promoting recovery from root avulsion injuries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Axonal growth across the dorsal root entry zone, one week post-lesion.
Figure 2: Functional reconnection of regenerating axons (A-fibre stimulation).
Figure 3: Functional reconnection of regenerating axons (high-intensity stimulation).
Figure 4: Behavioural recovery following rhizotomy.

Similar content being viewed by others

References

  1. Ramon y Cajal, S. Degeneration and Regeneration in the Nervous System (Hafner, New York, 1928).

    Google Scholar 

  2. Bennett, D. L. H. et al. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons following nerve injury. J. Neurosci. 18, 3059– 3072 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Averill, S., McMahon, S. B., Clary, D. O., Reichardt, L. F. & Priestley, J. V. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 7, 1484– 1494 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bradbury, E. J., Burnstock, G. & McMahon, S. B. The expression of P2X3 purinoceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol. Cell. Neurosci. 12, 256– 268 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. McMahon, S. B., Armanini, M. P., Ling, L. H. & Phillips, H. S. Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron 12, 1161–1171 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  6. Chong, M. S., Woolf, C. J., Haque, N. S. & Anderson, P. N. Axonal regeneration from injured dorsal roots into the spinal cord of adult rats. J. Comp. Neurol. 410, 42– 54 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Kozlova, E. N., Stromberg, I., Bygdeman, M. & Aldskogius, H. Peripherally grafted human foetal dorsal root ganglion cells extend axons into the spinal cord of adult host rats by circumventing dorsal root entry zone astrocytes. Neuroreport 6, 269– 272 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Thompson, S. W. N., Dray, A., McCarson, K. E., Krause, J. E. & Urban, L. Nerve growth factor induces mechanical allodynia associated with novel A fibre-evoked spinal reflex activity and enhanced neurokinin-1 receptor activation in the rat. Pain 62, 219–231 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Houle, J. D., Skinner, R. D., Garcia-Rill, E. & Turner, K. L. Synaptic evoked potentials from regenerating dorsal root axons within fetal spinal cord tissue transplants. Exp. Neurol. 139, 278–290 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Oudega, M. & Hagg, T. Neurotrophins promote regeneration of sensory axons in the adult rat spinal cord. Brain Res. 818, 431–438 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Itoh, Y. & Tessler, A. Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain: a comparison of growth and synapse formation in appropriate and inappropriate targets. J. Comp. Neurol. 302, 272–293 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Tessler, A., Himes, B. T., Houle, J. D. & Reier, P. J. Regeneration of adult dorsal root axons into transplants of embryonic spinal cord. J. Comp. Neurol. 270, 537– 548 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Rosario, C. M., Aldskogius, H., Carlstedt, T. & Sidman, R. L. Centrifugal growth in orthotopic grafts of allogenic dorsal root ganglia of adult rats: evidence for possible central ingrowth. Exp. Neurol. 115, 158–162 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  14. Ramon-Cueto, A. & Nieto-Sampedro, M. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp. Neurol. 127, 232– 244 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Sims, T. J. & Gilmore, S. A. Regeneration of dorsal root axons into experimentally altered glial environments in the rat spinal cord. Exp. Brain Res. 99, 25–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Y., Dijkhuizen, P. A., Anderson, P. N., Lieberman, A. R. & Verhaagen, J. NT-3 delivered by an adenoviral vector induces injured dorsal root axons to regenerate into the spinal cord of adult rats. J. Neurosci. Res. 15 , 554–562 (1998).

    Article  Google Scholar 

  17. Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibres into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  18. Iwaya, K., Mizoi, K., Tessler, A. & Itoh, Y. Neurotrophic agents in fibrin glue mediate adult dorsal root regeneration into spinal cord. Neurosurgery 44, 589–596 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Cai, D., Shen, Y., DeBellard, M. E., Tang, S. & Filbin, M. T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89– 101 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Schnell, L., Schneider, R., Kolbeck, R., Barde, Y. A. & Schwab, M. E. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367, 170–173 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Dyer, J. K., Bourke, J. A. & Steeves, J. D. Regeneration of brainstem-spinal axons after lesion and immunological disruption of myelin in adult rat. Exp. Neurol. 154, 12–22 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  22. Kalderon, N. & Fuks, Z. Structural recovery in lesioned adult mammalian spinal cord by x-irradiation of the lesion site. Proc. Natl Acad. Sci. USA 93, 11179–11184 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davies, S. J. et al. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680– 683 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Bradbury, E. J., Khemani, S., King, V. R., Priestley, J. V. & McMahon, S. B. NT-3 promotes growth of lesioned adult rat sensory neurons ascending in the dorsal columns of the spinal cord. Eur. J. Neurosci. 11, 3873–3883 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, X. F. et al. Satellite cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. Eur. J. Neurosci. 11, 1711–1722 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Winkler, J. et al. Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann. Neurol. 41, 82–93 ( 1997).

    Article  ADS  Google Scholar 

  27. Fraher, J. P. The transitional zone and CNS regeneration. J. Anat. 194, 161–182 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Bradbury and T. Boucher for critical review of the manuscript, V. Cheah for technical assistance, and D. Shelton and Q. Yan for supplying neurotrophic factors. This work was supported by the European Union (S.B.M and J.V.P.) and a Prideaux grant from the Special Trustees of St. Thomas’ Hospital (S.B.M). M.S.R. receives a fellowship from the Medical Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt S. Ramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramer, M., Priestley, J. & McMahon, S. Functional regeneration of sensory axons into the adult spinal cord. Nature 403, 312–316 (2000). https://doi.org/10.1038/35002084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002084

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing