Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ

Abstract

Although the crystal structures of the copper oxide high-temperature superconductors are complex and diverse, they all contain some crystal planes consisting of only copper and oxygen atoms in a square lattice: superconductivity is believed to originate from strongly interacting electrons in these CuO2 planes. Substituting a single impurity atom for a copper atom strongly perturbs the surrounding electronic environment and can therefore be used to probe high-temperature superconductivity at the atomic scale. This has provided the motivation for several experimental1,2,3,4,5,6,7,8 and theoretical studies9,10,11,12,13,14,15,16,17,18,19,20. Scanning tunnelling microscopy (STM) is an ideal technique for the study of such effects at the atomic scale, as it has been used very successfully to probe individual impurity atoms in several other systems21,22,23,24,25. Here we use STM to investigate the effects of individual zinc impurity atoms in the high-temperature superconductor Bi2Sr2CaCu2O8+δ. We find intense quasiparticle scattering resonances26 at the Zn sites, coincident with strong suppression of superconductivity within 15 Å of the scattering sites. Imaging of the spatial dependence of the quasiparticle density of states in the vicinity of the impurity atoms reveals the long-sought four-fold symmetric quasiparticle ‘cloud’ aligned with the nodes of the d-wave superconducting gap which is believed to characterize superconductivity in these materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topographic image and associated low-energy DOS-map of the surface layer (BiO) of a cleaved single crystal of BSCCO.
Figure 2: Two tunnelling spectra measured on the same surface shown in Fig. 1.
Figure 3: Relationship between the position of the Bi atoms on the crystal surface, the resonant DOS structure at the Zn atom, and the position of the Cu and O atoms in the superconducting plane two layers below.
Figure 4: Evolution of the differential tunnelling conductance at the resonance energy, and the full conductance spectrum, with distance from the Zn site.

Similar content being viewed by others

References

  1. Maeda, A., Yabe, T., Takebayashi, S., Hase, M. & Uchinokura, K. Substitution of 3d metals for Cu in Bi2(Sr 0.6Ca0.4)3Cu2Oy Phys. Rev. B 41, 4112–4117 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Ishida, K. et al. Gapless superconductivity in Zn-doped YBa2Cu 3O7 studied by Cu NMR and NQR. Possibility of d-wave superconductivity in high-Tc oxides Physica C 179, 29–38 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Bonn, D. A. et al. Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3O6.95. Phys Rev. B 50, 4051–4063 ( 1994).

    Article  ADS  CAS  Google Scholar 

  4. Fukuzumi, Y., Mizuhashi, K., Takenaka, K. & Uchida, S. Universal superconductor-insulator transition and Tc depression in Zn-substituted high-Tc cuprates in the underdoped regime. Phys. Rev. Lett. 76, 684– 687 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Nachumi, B. et al. Muon spin relaxation studies of Zn-substitution effects in high- Tc cuprate superconductors Phys. Rev. Lett. 77, 5421–5424 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Basov, D.N., Dabrowski, B. & Timusk, T. Infrared probe of transition from superconductor to nonmetal in YBa2(Cu1–xZnx)4O 8 Phys. Rev. Lett. 81, 2132– 2135 (1998).

    Article  ADS  CAS  Google Scholar 

  7. White,, P.J et al. Zn impurities in Bi2Sr2Ca(Cu1–x Znx)2O8+δ – electronic structure evolution. Preprint cond-mat/9901349 at 〈http://xxx.lanl.gov〉 (1999).

  8. Fong,, H.F et al. Effect of nonmagnetic impurities on the magnetic resonance peak in YBa2Cu3O7. Phys. Rev. Lett. 82, 1939–1942 ( 1999).

    Article  ADS  CAS  Google Scholar 

  9. Lee,, P. A. Localized states in a d-wave superconductor Phys. Rev. Lett. 71, 1887–1890 ( 1993).

    Article  ADS  CAS  Google Scholar 

  10. Byers,, J.M., Flatté, M.E. & Scalapino, D.J. Influence of gap extrema on the tunneling conductance near an impurity in an anisotropic superconductor Phys. Rev. Lett. 71, 3363–3366 ( 1993).

    Article  ADS  CAS  Google Scholar 

  11. Sun, Y. & Maki, K. Impurity effects in d-wave superconductors Phys. Rev. B 51, 6059– 6063 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Balatsky, A.V., Salkola, M.I. & Rosengren, A. Impurity-induced virtual bound states in d-wave superconductors Phys. Rev. B 51, 15547– 15551 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Salkola,, M.I., Balatsky, A.V. & Scalapino, D.J. Theory of scanning tunneling microscopy probe of impurity states in a d-wave superconductor Phys. Rev. Lett. 77, 1841–1844 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Hirschfeld, P.J. & Puttika, W.O. Theory of thermal conductivity in YBa2Cu3O7–δ Phys. Rev. Lett. 77, 3909–3912 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Franz, M., Kallin, C. & Berlinsky, A.J. Impurity scattering and localization in d-wave superconductors Phys. Rev. B 54, R6897– R6900 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Salkola, M.I. & Schrieffer, J.R. Unusual states of inhomogeneous dx2-y2 + idxy superconductors Phys. Rev. B 58, R5952–R5955 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Atkinson, W.A. & MacDonald, A.H. Visualizing quasiparticle scattering resonances Science 285, 57– 58 (1999).

    Article  CAS  Google Scholar 

  18. Tsuchiura, H., Tanaka, Y., Ogata, M. & Kashiwaya, S. Quasiparticle properties around a nonmagnetic impurity in the superconducting state of the two-dimensional t-J model. J. Phys. Soc. Jpn 68, 2510–2513 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Flatte, M.E. & Byers, J.M. Local electronic structure of defects in superconductors Solid State Phys. 52, 137–228 (1999).

    Article  CAS  Google Scholar 

  20. Salkola, M.I., Balatsky, A.V. & Schrieffer, J.R. Spectral properties of quasiparticle excitations induced by magnetic moments in superconductors Phys. Rev. B 55, 12648–12661 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Crommie, M.F., Lutz, C.P. & Eigler, D.M. Imaging standing waves in a two-dimensional gas Nature 363, 524–527 ( 1993).

    Article  ADS  CAS  Google Scholar 

  22. Zheng, J.F et al. Scanning tunneling microscopy studies of Si donors (SiGa ) in GaAs. Phys. Rev. Lett. 72, 1490 –1493 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Yazdani, A., Jones, B.A., Lutz, C.P., Crommie, M.F. & Eigler, D.M. Probing the local effects of magnetic impurities on superconductivity Science 275, 1767– 1770 (1997).

    Article  CAS  Google Scholar 

  24. Madhavan, V., Chen, W. Jamneala, T., Crommie, M.F. & Wingreen, N.S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance Science 280, 567–569 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Wittneven, Chr., Dombrowski, R., Morgenstern, M. & Wiesendanger, R. Scattering states of ionized dopants probed by low temperature scanning tunneling spectroscopy Phys. Rev. Lett. 81, 5616– 5619 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Hudson, E.W., Pan, S.H., Gupta, A.K., Ng, K.-W. & Davis, J.C. Atomic-scale quasiparticle scattering resonances in Bi 2Sr2CaCu2O8+δ Science 285, 88–91 ( 1999).

    Article  ADS  CAS  Google Scholar 

  27. Yazdani, A., Howald, C.M., Lutz, C.P., Kapitulnik, A. & Eigler, D.M. Impurity-induced bound excitations on the surface of Bi1Sr2CaCu 2O8 Phys. Rev. Lett. 83, 176–179 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Motohira, N., Kuwahara, K., Hasegawa, T., Kishio, K. & Kitazawa, K. Single crystal growth of Bi2Sr2Ca n–1CunOy superconductors by the floating zone method J. Ceram. Soc. Jpn 97, 1009– 1014 (1989).

    Article  CAS  Google Scholar 

  29. Wells, B.O. et al. Evidence for k-dependent, in-plane anisotropy of the superconducting gap in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 46, 11830– 11834 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Andersen, O. K., Jepsen, O., Liechtenstein, A. I. & Mazin, I. I. Plane dimpling and saddle-point bifurcation in the band structures of optimally doped high-temperature superconductors: a tight-binding model. Phys. Rev. B 49, 4145–4157 (1994).

    Article  ADS  CAS  Google Scholar 

  31. Mahajan, A.V., Alloul, H., Collin, G. & Marucco, J.F. 89Y NMR probe of Zn induced local moments in YBa2(Cu1–yZny)3O 6+x Phys. Rev. Lett. 72, 3100– 3103 (1994).

    Article  ADS  CAS  Google Scholar 

  32. Nagaosa, N. & Lee, P.A. Kondo effect in high-T c cuprates. Phys. Rev. Lett. 79, 3755 –3758 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Balatsky, D. Bonn, M. Crommie, M. Flatté, M. Franz, S. Kashiwaya, A. de Lozanne, A. MacDonald, V. Madhavan, M. Ogata, J. Orenstein, D. J. Scalapino, Z.-X. Shen, Y. Tanaka and D. van der Marel for conversations and communications. This work was supported by the LDRD Program of the Lawrence Berkeley National Laboratory under contract to the Department of Energy, by the D. & L. Packard Foundation, by an IBM predoctoral fellowship (K.M.L.), by Grant-in-Aid for Scientific Research on Priority Area (Japan), and by a COE grant from the Ministry of Education, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, S., Hudson, E., Lang, K. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ. Nature 403, 746–750 (2000). https://doi.org/10.1038/35001534

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001534

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing