Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Consumption of atmospheric methane by tundra soils

Abstract

EMISSION of methane from tundra soil contributes about 10% of the global atmospheric methane budget1. Moreover, tundra soils contain 15% of global soil carbon2, so the response of this large carbon reservoir to projected global warming3,4 could be important. Coupled biological models3–6 predict that a warmer climate will increase methane emission through increased rates of methanogenesis. Microbial oxidation of methane is, however, a possible control on emissions that has previously been overlooked. Here we report the results of field and laboratory experiments on methane consumption by tundra soils. For methane concentrations ranging from below to well above ambient, moist soils were found to consume methane rapidly; in non-waterlogged soils, equilibration with atmospheric methane was fast relative to microbial oxidation. We conclude that lowering of the water table in tundra as a result of a warmer, drier climate will decrease methane fluxes and could cause these areas to provide a negative feedback for atmospheric methane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cicerone, R. J. & Oremland, R. S. Global biogeochem. Cycles 2, 299–327 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Post W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. J. Nature 298, 156–159 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Khalil, M. A. K. & Rasmussen, R. A. Tellus B41, 554–559 (1989).

    Article  Google Scholar 

  4. Lashof, D. A. Clim. Change 14, 213–242 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Guthrie P. D. J. geophys. Res. 91, 10847–10851 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Hameed, S. & Cess, R. D. Tellus B35, 1–7 (1983).

    Article  Google Scholar 

  7. Steele, L. P. et al. J. atmos. Chem. 5, 125–171 (1987).

    Article  CAS  Google Scholar 

  8. Blake, D. R. & Rowland, F. S. Science 239, 1129–1131 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Dickinson, R. E. & Cicerone, R. J. Nature 319, 109–115 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Mitchell, J. F. B. Rev. Geophys. 27, 115–139 (1989).

    Article  ADS  Google Scholar 

  11. Ramanathan, V. et al. Rev. Geophys. 25, 1441–1482 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Enhalt, D. Tellus 26, 59–70 (1974).

    ADS  Google Scholar 

  13. Manabe, S. & Wetherald, R. T. J. atmos. Chem. 44, 1211–1235 (1987).

    Article  ADS  Google Scholar 

  14. Schlesinger, M. E. & Zhao, Z-C. J. Clim. 2, 459–495 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Wilson, C. A. & Mitchell, F. B. J. geophys. Res. 92, 13315–13343 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Born, M., Dörr, H. & Levin, I. Tellus B42, 2–8 (1990).

    Article  Google Scholar 

  17. Steudler, P. A., Bowden, R. D., Melillo, J. M. & Aber, J. D. Nature 341, 314–316 (1989).

    Article  ADS  Google Scholar 

  18. Keller, M., Goreau, T. J., Wofsey, S. C., Kaplan, W. A. & McElroy, M. B. Geophys. Res. Lett. 12, 1156–1159 (1983).

    Article  ADS  Google Scholar 

  19. Harriss, R. C., Sebacher, D. I. & Day, F. P. Nature 297, 673–674.

  20. Goreau, T. J. & de Mello, W. Z. Ambio 17, 274–281 (1988).

    Google Scholar 

  21. Seiler, W. & Conrad, R. in Geophysiology of the Amazonia: Vegetation and Climate Interactions (ed. Dickinson, R. E.) 133–162 (Wiley, New York, 1987).

    Google Scholar 

  22. Keller, M., Kaplan, W. A. & Wofsey, S. C. J. geophys. Res. 91, 11791–11802 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Seiler, W., Conrad, R. & Scharffe, D. J. atmos. Chem. 1, 171–186 (1984).

    Article  CAS  Google Scholar 

  24. Whalen, S. C. & Reeburgh, W. S. Tellus B42, 237–249 (1990).

    Article  Google Scholar 

  25. King, S. L., Quay, P. D. & Lansdown, J. M. J. geophys. Res. 94, 18273–18277 (1989).

    Article  ADS  Google Scholar 

  26. Whalen, S. C. & Reeburgh, W. S. Global biogeochem. Cycles 2, 399–408 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Alperin, M. J. & Reeburgh, W. S. Appl. envir. Microbiol. 50, 940–945 (1985).

    CAS  Google Scholar 

  28. Woeller, F. H. Analyt. Biochem. 2, 508–511 (1961).

    Article  CAS  Google Scholar 

  29. Sparks, D. L. Kinetics of Soil Chemical Processes (Academic, San Diego, 1989).

    Google Scholar 

  30. Bédard, C. & Knowles, R. Microbiol. Rev. 53, 68–84 (1989).

    PubMed  PubMed Central  Google Scholar 

  31. Hutchinson, G. L. & Mosier, A. R. Soil Sci. Soc. Am. J. 45, 311–316 (1981).

    Article  ADS  CAS  Google Scholar 

  32. Conrad, R. in Current Perspectives in Microbial Ecology (eds Klug, M. J. & Reddy, C. A.) 461–467 (Am. Soc. Microbiol., Washington, DC (1984).

    Google Scholar 

  33. Ward, B. B. Arch. Mikrobiol. 147, 126–133 (1987).

    Article  CAS  Google Scholar 

  34. Sebacher, D. I., Harriss, R. C., Bartlett, K. B., Sebacher, S. M. & Grice, S. S. Tellus B38, 1–10 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whalen, S., Reeburgh, W. Consumption of atmospheric methane by tundra soils. Nature 346, 160–162 (1990). https://doi.org/10.1038/346160a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346160a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing