Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Hypothesis
  • Published:

Constraints on cortical and thalamic projections: the no-strong-loops hypothesis

Abstract

The many distinct cortical areas of the macaque monkey visual system can be arranged hierarchically, but not in a unique way. We suggest that the connections between these cortical areas never form strong, directed loops. For connections between the visual cortex and particular thalamic nuclei, we predict that certain types of connections will not be found. If strong, directed loops were to exist, we suggest that the cortex would go into uncontrolled oscillations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rules used by Felleman and Van Essen1 for deciding whether a projection between two co.
Figure 2: Forbidden cortical loops.
Figure 3: An acyclic digraph with eight nodes (A to H), drawn so that all the arrows point upwards.
Figure 4: Termination of a typical R (round)-type corticopulvinar axon and an E (extended) corticopulvinar axonal termination.
Figure 5: Permissible and forbidden connections between thalamus and cortex.
Figure 6: A hypothetical set of connections lacking strong directed loops.

Similar content being viewed by others

References

  1. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 ( 1991).

    Article  CAS  Google Scholar 

  2. Rockland, K. S. & Pandya, D. N. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res. 179, 3– 20 (1979).

    Article  CAS  Google Scholar 

  3. Hilgetag, C.-C., O'Neill, M. A. & Young, M. P. Indeterminate organization of the visual system. Science 271, 776–777 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Robinson, D. F. & Foulds, L. R. Digraphs: Theory and Techniques (Gordon and Breach, New York, (1980)).

    MATH  Google Scholar 

  5. Van Essen, D. C. & Felleman, D. J. On hierarchies (response to Hilgetag et al.). Science 271, 777 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Gutierrez, C., Yaun, A. & Cusick, C. G. Neurochemical subdivisions of the inferior pulvinar in macaque monkeys. J. Comp. Neurol. 363, 545–562 (1995).

    Article  CAS  Google Scholar 

  7. Robinson, D. L. & Cowie, R. J. in Thalamus, 2: Experimental and Clinical Studies (eds Steriade, M., Jones, E. G. & McCormick, D. A.) (Elsevier, Amsterdam, in the press).

  8. Mathers, L. H. Ultrastructure of the pulvinar of the squirrel monkey. J. Comp. Neurol. 146, 15–42 ( 1972).

    Article  CAS  Google Scholar 

  9. Mathers, L. H. The synaptic organization of the cortical projection to the pulvinar of the squirrel monkey. J. Comp. Neurol. 146, 43 –60 (1972).

    Article  CAS  Google Scholar 

  10. Ojima, H. Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb. Cortex 6, 646–663 ( 1994).

    Article  Google Scholar 

  11. Rockland, K. S. Further evidence for two types of corticopulvinar neurons. NeuroReport 5, 1865–1868 ( 1994).

    Article  CAS  Google Scholar 

  12. Rockland, K. S. Two types of corticopulvinar terminations: round (type 2) and elongate (type 1). J. Comp. Neurol. 368, 57– 87 (1996).

    Article  CAS  Google Scholar 

  13. Bourassa, J., Deschênes, M. Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience 66, 253–263 (1995).

    Article  CAS  Google Scholar 

  14. Guillery, R. W. Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J. Anat. 187, 583–592 (1995).

    PubMed  PubMed Central  Google Scholar 

  15. Sherman, S. M. & Guillery, R. W. Functional organization of thalamocortical relays. J. Neurophys. 76, 1367–1395 (1996).

    Article  CAS  Google Scholar 

  16. Guillery, R. W. Patterns of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat and monkey: a brief review. Vision Res. 3, 211–227 (1971).

    Article  Google Scholar 

  17. Kalil, R. E. & Chase, R. Corticofugal influence on activity of lateral geniculate neurons in the cat. J. Neurophysiol. 33, 459–474 (1970).

    Article  CAS  Google Scholar 

  18. Baker, F. H. & Malpeli, J. G. Effects of cryogenic blockade of visual cortex on the responses of lateral geniculate neurons in the monkey. Exp. Brain Res. 29, 433– 444 (1977).

    CAS  PubMed  Google Scholar 

  19. Sillito, A. M., Jones, H. E., Gerstein, G. L. & West, D. C. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369, 479– 482 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Callaway, E. M. Local circuits in primary visual cortex of the macaque monkey. Annu. Rev. Neurosci.(in the press).

  21. Rockland, K. S. Convergence and branching patterns of round, type 2 corticopulvinar axons. J. Comp. Neurol.(in the press).

  22. Peters, A., Payne, B. R. & Budd, J. Anumerical analysis of the geniculocortical input to striate cortex in the monkey. Cereb. Cortex 4, 215–229 (1994).

    Article  CAS  Google Scholar 

  23. Hendry, S. H. C. & Yoshioka, T. Aneurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264, 575–577 ( 1994).

    Article  ADS  CAS  Google Scholar 

  24. Jones, E. G. The Thalamus (Plenum, New York, (1985)).

    Book  Google Scholar 

  25. Levitt, J. B., Yoshioka, T. & Lund, J. S. Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey. Exp. Brain Res. 104, 419–430 (1995).

    Article  CAS  Google Scholar 

  26. Hirsch, M. W. Convergent activation dynamics in continuous time networks. Neural Networks 2, 331–349 ( 1989).

    Article  Google Scholar 

  27. Kuan, C.-M., Hornik, K. & White, H. Aconvergence result for learning in recurrent neural networks. Neural Comp. 6, 420–440 (1994).

    Article  Google Scholar 

  28. Sandell, J. H. & Schiller, P. H. Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J. Neurophys. 48, 38–48 (1982).

    Article  CAS  Google Scholar 

  29. Mignard, M. & Malpeli, J. G. Paths of information flow through visual cortex. Science 251, 1249– 1251 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Salin, P.-A. & Bullier, J. Corticocortical connections in the visual system: structure and function. Physiol. Rev. 75, 107–154 (1995).

    Article  CAS  Google Scholar 

  31. Crick, F. & Koch, C. Are we aware of neural activity in primary visual cortex? Nature 375, 121– 123 (1995).

    Article  ADS  CAS  Google Scholar 

  32. Webster, M. J., Bachevalier, J. & Ungerleider, L. G. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb. Cortex 5, 470–483 ( 1994).

    Article  Google Scholar 

  33. Douglas, R., Koch, C., Mahowald, M., Martin, K. & Suarez, H. Recurrent excitation in neocortical circuits. Science 269, 981–985 ( 1995).

    Article  ADS  CAS  Google Scholar 

  34. Lisman, J. E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38– 43 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.C. is supported by the J. W. Kieckhefer Foundation. C.K. is supported by the National Institute of Mental Health, the Office of Naval Research and the National Science Foundation. Especial thanks to Jan Kaas and Kathy Rockland.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crick, F., Koch, C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391, 245–250 (1998). https://doi.org/10.1038/34584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34584

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing