Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor

Abstract

THE diffusive boundary layer (DBL) is a thin (1 mm) film of water that covers the sea floor, and through which molecular diffusion is the dominant transport mechanism for dissolved material. The diffusive fluxes are a measure of the rate of remineralization of organic matter in the sea bed, and of the dissolution or precipitation of minerals such as carbonates or metal oxides. Here we report detailed in situ analyses of chemical microgradients within the DBL, using a microelectrode profiling instrument with a spatial resolution of 25–50 µm. Over a Danish coastal sediment at 15 m water depth, the DBL was 0.5-0.7 mm thick and showed both stochastic fluctuations of oxygen distribution owing to boundary-layer turbulence and harmonic oscillations resulting from surface waves. A three-dimensional mapping of the DBL and the corresponding sediment surface showed that the DBL was spatially well defined and followed surface contours, but smoothed out sediment microtopographic features smaller than 100 µm. The three-dimensional oxygen diffusive flux across the sediment/water interface was about 2.5 times higher than that calculated from a simple one-dimensional diffusion model. These results indicate that benthic oxygen consumption and other fluxes can be studied by direct measurement of DBL microgradients at the undisturbed sea floor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shaw, D. A. & Hanratty, T. J. Am. Inst. chem. Eng. J. 23, 28–37 (1977).

    Article  CAS  Google Scholar 

  2. Boudreau, B. P. & Guinasso, N. L. Jr in The Dynamic Environment of the Ocean Floor (eds Fanning, K. A. & Manheim, F. T.) 111–145 (Lexington, Massachusetts, 1982).

    Google Scholar 

  3. Santchi, P. H., Bower, P., Nyffeler, U. P., Azevedo, A. & Broecker, W. S. Limnol. Oceanogr. 28, 899–912 (1983).

    Article  ADS  Google Scholar 

  4. Jørgensen, B. B. & Revsbech, N. P. Limnol. Oceanogr. 30, 111–122 (1985).

    Article  ADS  Google Scholar 

  5. Archer, D., Emerson, S. & Smith, C. R. Nature 340, 623–626 (1989).

    Article  ADS  Google Scholar 

  6. Boudreau, B. P. Am. J. Sci. 288, 777–797 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Hall, P. O. J. et al. Limnol. Oceanogr. 34, 734–746 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Schink, D. R. & Guinasso, N. L. Jr in The Fate of Fossil Fuel CO2 in the Oceans (eds Andersen, N. R. & Malahoff, A.) 375–399 (Plenum, New York, 1977).

    Book  Google Scholar 

  9. Revsbech, N. P. Linmol. Oceanogr. 34, 474–478 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Revsbech, N. P. & Jørgensen, B. B. Adv. microbiol. Ecol. 9, 293–352 (1986).

    Article  Google Scholar 

  11. Reimers, C. E. Deep Sea Res. 34, 2019–2035 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Reimers, C. E., Fischer, K. M., Merewether, R., Smith, K. L. Jr. & Jahnke, R. A. Nature 320, 741–744 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Revsbech, N. P. J. Microbiol. Meth. 9, 111–122 (1989).

    Article  Google Scholar 

  14. Sweerts, J-P. R. A., St Louis, V. & Cappenberg, T. E. Freshwater Biol. 21, 401–409 (1989).

    Article  Google Scholar 

  15. Crank, J. The Mathematics of Diffusion (Clarendon, Oxford, 1975).

    MATH  Google Scholar 

  16. Broecker, W. S. & Peng, T-H. Tellus 26, 21–35 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Campbell, J. A. & Hanratty, T. J. Am. Inst. chem. Eng. J. 29, 215–221 (1983).

    Article  CAS  Google Scholar 

  18. Dworak, R. & Wendt, H. Ber. Bunsenges. phys. Chem. 81, 864–869.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gundersen, J., Jorgensen, B. Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature 345, 604–607 (1990). https://doi.org/10.1038/345604a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345604a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing