Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives

Abstract

IN prokaryotes and eukaryotes many gene activators work synergistically. For example, two dimers of λ represser interact to promote binding of these proteins to DNA, a reaction that is crucial at the repressor concentrations found in lysogens1. In this case one of the bound dimers activates transcription, evidently by touching RNA polymerase2. In another example, the yeast transcriptional activator GAL4, which can stimulate transcription in many eukaryotes, binds to multiple sites on DNA to activate transcription synergistically; the presence of two such sites can elicit a level of transcription more than twice that found with a single site3. In this paper we show that synergistic activation by each of several GAL4 derivatives involves a mechanism different from that illustrated by the λ repressor: multiple activator molecules can work synergistically under conditions in which their binding sites on DNA are saturated. The accompanying paper shows that under similar conditions of activator excess, GAL4 derivatives work synergistically with a heterologous mammalian gene activator4. These results support the idea that eukaryotic activators can cooperate not by directly interacting but by simultaneously touching some component(s) of the transcriptional machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnson, A. D., Pabo, C. O. & Ptashne, M. Proc. natn. Acad. Sci. U.S.A. 76, 5061–5065 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Hochschild, A., Irwin, N. & Ptashne, M. Cell 32, 319–325 (1983).

    Article  CAS  Google Scholar 

  3. Giniger, E. & Ptashne, M. Proc. natn. Acad. Sci. U.S.A. 85, 383–386 (1987).

    Google Scholar 

  4. Lin, Y.-S., Carey, M. F., Ptashne, M. & Green, M. R. Nature 345, 359–361 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Ma, J. & Ptashne, M. Cell 48, 847–853 (1989).

    Article  Google Scholar 

  6. Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. Nature 335, 563–564 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Lillie, J. W. & Green, M. R. Nature 338, 39–44 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Carey, M., Kakidani, H., Leatherwood, J., Mostashari, F. & Ptashne, M. J. molec. Biol. 209, 423–432 (1989).

    Article  CAS  Google Scholar 

  9. Giniger, E. & Ptashne, M. Nature 330, 670–672 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Lin, Y. S., Carey, M., Ptashne, M. & Green, M. R. Cell 54, 659–664 (1988).

    Article  CAS  Google Scholar 

  11. Davidson, I., Xiao, J. H., Rosales, R., Staub, A. & Chambon, P. Cell 54, 931–942 (1988).

    Article  CAS  Google Scholar 

  12. Strahle, U., Schmid, W. & Schutz, G. EMBO J. 11, 3389–3395 (1988).

    Article  Google Scholar 

  13. Lopata, M. A., Cleveland, D. W. & Sollner-Webb, B. Nucleic Acids Res. 12, 5705–5717 (1984).

    Article  Google Scholar 

  14. Lin, Y.-S. & Green, M. R. Nature 340, 656–659 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Chasen, D., Leatherwood, J., Carey, M., Ptashne, M. & Kornberg, R. Molec. cell. Biol. 9, 4746–4749 (1989).

    Article  Google Scholar 

  16. Carey, M., Leatherwood, J. & Ptashne, M. Science 247, 710–712 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carey, M., Lin, YS., Green, M. et al. A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature 345, 361–364 (1990). https://doi.org/10.1038/345361a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345361a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing