Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree

Abstract

HOW many primary lineages of life exist and what are their evolutionary relationships? These are fundamental but highly controversial issues1. Woese and co-workers2–4 propose that archaebacteria, eubacteria and eukaryotes are the three primary lines of descent and their relationships can be represented by Fig. 1a (the 'archaebacterial tree') if one neglects the root of the tree. In contrast, Lake5,6 claims that archaebacteria are paraphyletic, and he groups eocytes (extremely thermophilic, sulphur-dependent bacteria) with eukaryotes, and halobacteria with eubacteria (the 'eocyte tree', Fig. 1b). Lake's view has gained considerable support as a result of an analysis6 of small subunit ribosomal RNA sequence data by a new approach, the evolutionary parsimony method7. Here we report that analysis of small subunit data by the neighbour-joining and maximum parasimony methods8,9 favours the archaebacterial tree and that computer simulations using either the archaebacterial or the eocyte tree as a model tree show that the probability of recovering the model tree is very high (>90 per cent) for both the neighbour-joining and maximum parsimony methods but is relatively low for the evolutionary parsimony method. Moreover, analysis of large subunit rRNA sequences by all three methods strongly favours the archaebacterial tree.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Penny, D. Nature 331, 111–112 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Woese, C. R. & Fox, G. E. Proc. natn. Acad. Sci. U.S.A. 74, 5088–5090 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Woese, C. R. & Wolfe, R. S. in Archaebacteria (eds Woese, C. R. & Wolfe, R. S.) The Bacteria Volume VIII, 561–564 (Academic, New York, 1985).

    Book  Google Scholar 

  4. Woese, C. R. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lake, J. A., Henderson, E., Oakes, M. & Clark, M. W. Proc. natn. Acad. Sci. U.S.A. 81, 3786–3790 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Lake, J. A. Nature 331, 184–186 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Lake, J. A. Molec. Biol. Evol. 4, 167–191 (1987).

    CAS  PubMed  Google Scholar 

  8. Saitou, N. & Nei, M. Molec. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  9. Fitch, W. M. Am. Nat. 111, 223–257 (1977).

    Article  Google Scholar 

  10. Dams, E. et al. Nucleic Acids Res. 16, r87–r173 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leffers, H., Kjems, J., Østergaard, L., Larsen, N. & Garrett, R. A. J. molec. Biol. 195, 43–61 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Felsenstein, J. Evolution 39, 783–791 (1985).

    Article  PubMed  Google Scholar 

  13. Cedergren, R., Gray, M. W., Abel, Y. & Sankoff, D. J. molec. Evol. 28, 98–112 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Gutell, R. R. & Fox, G. E. Nucleic Acids Res. 16, r175–r269 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Higgins, D. G. & Sharp, P. M. Gene 73, 237–244 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Li, W.-H., Wolfe, K. H., Sourdis, J. & Sharp, P. M. Symp. quant. Biol. 52, 847–856 (1987).

    Article  CAS  Google Scholar 

  17. Olsen, G. J. Symp. quant. Biol. 52, 825–837 (1987).

    Article  CAS  Google Scholar 

  18. Tautz, D., Hancock, J. M., Webb, D. A., Tautz, C. & Dover, G. A. Molec. Biol. Evol. 5, 366–376 (1988).

    CAS  PubMed  Google Scholar 

  19. Lake, J. A. Nature 321, 257–258 (1986).

    Article  Google Scholar 

  20. Earth's Earliest Biosphere (ed. Schopf, J. W.) (Princeton Univ. Press, Princeton, 1983).

  21. Cavalier-Smith, T. in Endocytobiology III (eds Lee, J. J. & Fredrick, J. F.) Ann. New York Acad. Sci. 503, 17–54 (1987).

    Google Scholar 

  22. Berghöfer, B. et al. Nucleic Acids Res. 16, 8113–8128 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lake, J. A. J. molec. Evol. 26, 59–73 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Kimura, M. J. molec. Evol. 16, 111–120 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Li, W.-H. Molec. Biol. Evol. (in the press).

  26. Johansen, T., Johansen, S. & Haugli, F. B. Current Genet. 14, 265–273 (1988).

    Article  CAS  Google Scholar 

  27. Höpfl, P., Ulrich, N., Hartmann, R. K., Ludwig, W. & Schleifer, K. H. Nucleic Acids Res. 16, 9043 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Murzina, N. V., Vorozheykina, D. P. & Matvienko, N. I. Nucleic Acids Res. 16, 8172 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouy, M., Li, WH. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature 339, 145–147 (1989). https://doi.org/10.1038/339145a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339145a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing