Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laboratory model of a planetary eastward jet

Abstract

The concentration of eastward planetary currents into strong wavy jets is a major feature of the atmospheric general circulation (for example, the jet stream) and of oceanic currents (for example, the Gulf Stream east of Cape Hatteras). These strongly nonlinear jets are, however, not well understood. Here we describe experiments in which we have produced similar jets in a rotating annulus with mechanical forcing: the Coriolis force acting on fluid pumped radially inward from a ring of sources to a ring of sinks results in a strong eastward jet. For a wide range of parameters the jet has a robust wavy shape, as shown in Fig. 1. The wave velocity and wavelength of these Rossby waves are accounted for by simple scaling arguments. Experiments with dye injected into the fluid show that the jet acts as a barrier to tracer transport (see Fig. 1e), much as the southern polar night jet may act as a barrier to the transport of ozone from lower latitudes into the polar region1. Our observations are insensitive to the details of the arrangement of the sinks and sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Leovy, C. B. et al. J. atmos. Sci. 42, 230–244 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Pedlosky, J. Geophys. Fluid Dyn. (Springer, New York, 1982).

    Book  Google Scholar 

  3. Nguyen Duc, T. & Sommeria, J. J. Fluid Mech. 192, 175–192 (1988).

    Article  ADS  Google Scholar 

  4. Juckes, M. N. & Mclntyre, M. E. Nature 328, 590–596 (1987).

    Article  ADS  Google Scholar 

  5. McIntyre, M. E. & Palmer, T. N. Pure appl. Geophys. 123, 964–975 (1985).

    Article  ADS  Google Scholar 

  6. Rood, R. B. Pure appl. Geophys. 123, 733–755 (1985).

    Article  ADS  Google Scholar 

  7. Turner, J. S. Buoyancy Effects in Fluids Ch.9.1.1 (Cambridge Univ. Press, 1973).

    Book  Google Scholar 

  8. Talley, L. D. J. phys. Oceanogr. 13, 972–987 (1983).

    Article  ADS  Google Scholar 

  9. Killworth, P. D. & McIntyre M. E. J. Fluid Mech. 161, 449–492 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  10. Dritschel, D. G. J. Fluid Mech. 194, 511–547 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  11. Colin de Verdiere, A. J. Fluid Mech. 94, 39–64 (1979).

    Article  ADS  Google Scholar 

  12. McEwan, A. D., Thomson, R. O. R. Y. & Plumb, R. A. J. Fluid Mech. 99, 655–672 (1980).

    Article  ADS  Google Scholar 

  13. Whitehead, J. A. Tellus 27, 358–363 (1975).

    Article  ADS  Google Scholar 

  14. Rhines, P. B. & Holland, W. R. Dyn. Atmos. Oceans 3, 289–325 (1979).

    Article  ADS  Google Scholar 

  15. Sommeria, J., Meyers, S. D. & Swinney, H. L. Nature 331, 689–693 (1988).

    Article  ADS  Google Scholar 

  16. Kuo, H. L. J. Met. 6, 105–122 (1949).

    Article  Google Scholar 

  17. Howard, P. G. & Drazin, L. N. J. math. Phys. 43, 83–99 (1964).

    Article  MathSciNet  Google Scholar 

  18. Fultz, D. et al. Met. Monogr. 4, 1–104 (1959).

    Google Scholar 

  19. Pfeffer, R. L. & Fowlis, W. W. J. atmos. Sci. 25, 361–371 (1968).

    Article  ADS  Google Scholar 

  20. Hide, R. & Mason, P. J. Adv. Phys. 24, 47–100 (1975).

    Article  ADS  Google Scholar 

  21. Hart, J. E. A. Rev. Fluid Mech. 11, 147–172 (1979).

    Article  ADS  Google Scholar 

  22. White, H. D. & Koschmeider, E. L. Geophys. Astrophys. Fluid Dyn. 18, 301–310 (1981).

    Article  ADS  Google Scholar 

  23. McWilliams, J. in Non-Linear Topics in Ocean Physics (ed. Osborne, A.) (North-Holland, Amsterdam, in the press).

  24. Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. Q.J.R. met. Soc. 111, 877–946 (1985).

    Article  ADS  Google Scholar 

  25. Platzman, G. W. Tellus 1, 53–64 (1949).

    Article  MathSciNet  Google Scholar 

  26. McDowell, S., Rhines, P. & Keffer, T. J. phys. Oceanogr. 12, 1417–1436 (1982).

    Article  ADS  Google Scholar 

  27. Al-Ajmi, D. N., Harwood, R. S. & Miles, T. Q.J.R. met. Soc. 111, 359–389 (1985).

    Article  ADS  Google Scholar 

  28. Butchart, N. & Remsberg, E. E. J. atmos. Sci. 43, 1319–1339 (1986).

    Article  ADS  Google Scholar 

  29. McIntyre, M. E. J. atmos. terr. Phys. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommeria, J., Meyers, S. & Swinney, H. Laboratory model of a planetary eastward jet. Nature 337, 58–61 (1989). https://doi.org/10.1038/337058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing