Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stabilization of wild-type p53 by hypoxia-inducible factor 1α

Abstract

Although hypoxia (lack of oxygen in body tissues) is perhaps the most physiological inducer of the wild-type p53 gene1, the mechanism of this induction is unknown. Cells may detect low oxygen levels through a haem-containing sensor protein2. The hypoxic state can be mimicked by using cobalt chloride and the iron chelator desferrioxamine2,3,4,5: like hypoxia, cobalt chloride and desferrioxamine activate hypoxia-inducible factor 1α (HIF-1α) (ref. 6), which stimulates the transcription of several genes that are associated with hypoxia6,7,8,9. Here we show that these treatments induce accumulation of wild-type p53 through HIF-1α-dependent stabilization of p53 protein. Induction of p53 does not occur in either a mutant hepatoma cell line that is unable to induce HIF-1α (ref. 10) or embryonic stem cells derived from mice lacking HIF-1β (ref. 11). HIF-1α is found in p53 immunoprecipitates from MCF7 cells that express wild-type p53 and are either hypoxic or have been exposed to desferrioxamine. Similarly, anti-haemagglutinin immunoprecipitates from lysates of normoxic PC3M cells that had been co-transfected with haemagglutinin-tagged HIF-1α and wild-type p53 also contain p53. Transfection of normoxic MCF7 cells with HIF-1α stimulates a co-transfected p53-dependent reporter plasmid and increases the amount of endogenous p53. Our results suggest that hypoxic induction of transcriptionally active wild-type p53 is achieved as a result of the stabilization of p53 by its association with HIF-1α.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cobalt chloride and desferrioxamine cause p53 protein stabilization.
Figure 2: Induction of p53 by cobalt chloride and desferrioxamine requires concomitant induction of HIF-1α.
Figure 3: p53 and HIF-1α proteins associate directly with each other.
Figure 4: HIF-1α potentiates PG13-luciferase activity that depends on wild-type p53 (wtp53).

Similar content being viewed by others

References

  1. Graeber, T. G. et al. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 14, 6264–6277 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldberg, M. A., Dunning, S. P. & Bunn, H. F. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412–1415 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Salceda, S., Beck, I. & Caro, J. Absolute requirement of aryl hydrocarbon receptor nuclear translocator protein for gene activaiton by hypoxia. Arch. Biochem. Biophys. 384, 389–394 (1996).

    Article  Google Scholar 

  4. Gradin, K. et al. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell Biol. 16, 5221–5231 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guillemin, K. & Krasnow, M. A. The hypoxic response: huffing and HIFing. Cell 89, 9–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, G. L. & Semenza, G. L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implicaitons for model of hypoxia signal transduction. Blood 82, 3610–3615 (1993).

    CAS  PubMed  Google Scholar 

  7. Wang, G. L. & Semenza, G. L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 21513–21518 (1993).

    CAS  PubMed  Google Scholar 

  8. Minchenko, A., Salceda, S., Bauer, T. & Caro, J. Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cell Mol. Biol. Res. 40, 35–39 (1994).

    CAS  PubMed  Google Scholar 

  9. Levy, A. P., Levy, N. S., Wegner, S. & Goldberg, M. A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 270, 13333–13340 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman, E. C. et al. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252, 954–958 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A. & Simon, M. C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wang, G. L. & Semenza, G. L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl Acad. Sci. USA 90, 4304–4308 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270, 1230–1237 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Wood, S. M., Gleadle, J. M., Pugh, C. W., Hankinson, O. & Ratcliffe, P. J. The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. J. Biol. Chem. 271, 15117–15123 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Kallio, P. J., Pongratz, I., Gradin, K., McGuire, J. & Poellinger, L. Activaiton of hypoxia-inducible factor 1α: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc. Natl Acad. Sci. USA 94, 5667–5672 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maki, C. G., Huibregtse, J. & Howley, P. M. In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res. 56, 2649–2654 (1996).

    CAS  PubMed  Google Scholar 

  18. Whitesell, L. et al. Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogene 14, 2809–2816 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Andrews, N. & Faller, D. Arapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids. Res. 19, 2499 ((1991)).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blagosklonny, M., Toretsky, J. & Neckers, L. Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene 11, 933–939 (1995).

    CAS  PubMed  Google Scholar 

  21. Arany, Z. et al. An essential role for p300/CPB in the cellular response to hypoxia. Proc. Natl Acad. Sci. USA 93, 12969–12973 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, L. E., Arany, Z., Livingston, D. M. & Bunn, H. F. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. J. Biol. Chem. 271, 32253–32259 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. El-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Trepel and O. Hankinson for cell lines, and B. Vogelstein and D.Livingston for plasmids and antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard M. Neckers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, W., Kanekal, M., Simon, M. et al. Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392, 405–408 (1998). https://doi.org/10.1038/32925

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32925

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing