Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mammalian and bacterial sugar transport proteins are homologous

Abstract

The uptake of a sugar across the boundary membrane is a primary event in the nutrition of most cells, but the hydrophobic nature of the transport proteins involved makes them difficult to characterize. Their amino-acid sequences can, however, be determined by cloning and sequencing the corresponding gene (or complementary DNA). We have determined the sequences of the arabinose-H+ and xylose-H+ membrane transport proteins of Escherichia coli. They are homologous with each other and, unexpectedly, with the glucose transporters of human hepatoma1 and rat brain2 cells. All four proteins share similarities with the E. coli citrate transporter18. Comparisons of their sequences and hydropathic profiles yield insights into their structure, functionally important residues and possible evolutionary relationships. There is little apparent homology with the lactose-H+ (LacY)3 or melibiose-Na+ (MeIB)4 transport proteins of E. coli.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mueckler, M. et al. Science 229, 941–945 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Birnbaum, M. J., Haspel, H. C. & Rosen, O. M. Proc. natn. Acad. Sci. U.S.A. 83, 5784–5788 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Buchel, D. E., Gronenborn, B. & Muller-Hill, B. Nature 283, 541–545 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Yazyu, H. et al. J. biol. Chem. 259, 4320–4326 (1984).

    CAS  PubMed  Google Scholar 

  5. Daruwalla, K. R., Paxton, A. T. & Henderson, P. J. F. Biochem. J. 200, 611–627 (1981).

    Article  CAS  Google Scholar 

  6. Davis, E. O., Jones-Mortimer, M. C. & Henderson, P. J. F. J. biol Chem. 259, 1520–1525 (1984).

    CAS  PubMed  Google Scholar 

  7. Mitchell, P. J. Bioenerg. 4, 63–91 (1973).

    Article  CAS  Google Scholar 

  8. Henderson, P. J. F. & Macpherson, A. J. S. Meth. Enzym. 125, 387–429 (1986).

    Article  CAS  Google Scholar 

  9. Kyte, J. & Doolittle, R. F. J. molec Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  10. Staden, R. Nucleic Acids Res. 10, 2951–2961 (1982).

    Article  CAS  Google Scholar 

  11. Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. J. molec. Biol. 179, 125–142 (1984).

    Article  CAS  Google Scholar 

  12. Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.) 345–352 (National Biomedical Research Foundation, Silver Spring, 1978).

    Google Scholar 

  13. Walker, J. E. & Fearnley, I. M. in Techniques for the Analysis of Membrane Proteins (eds Ragan, C. I. & Cherry, P.) 235–273 (Chapman & Hall, New York, 1986).

    Book  Google Scholar 

  14. Von Heijne, G. J. molec. Biol. 184, 99–105 (1985).

    Article  CAS  Google Scholar 

  15. Mueckler, M. & Lodish, H. F. Cell 44, 629–637 (1986).

    Article  CAS  Google Scholar 

  16. Reynolds, C. H. & Silver, S. J. Bact. 156, 1019–1024 (1983).

    CAS  PubMed  Google Scholar 

  17. Ishiguro, N. & Sato, G. J. Bact. 164, 977–982 (1985).

    CAS  PubMed  Google Scholar 

  18. Sasatsu, M., Misra, T. K., Chu, L., Laddaga, R. & Silver, S. J. Bact. 164, 983–993 (1985).

    CAS  PubMed  Google Scholar 

  19. Hirato, T., Shinagawa, M., Ishiguro, N. & Sato, G. J. Bact. 160, 421–426 (1984).

    CAS  PubMed  Google Scholar 

  20. Doolittle, R. F. Science 214, 149–159 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Walker, J. E., Saraste, M. & Gay, N. J. Biochim. biophys. Acta 768, 164–200 (1984).

    Article  CAS  Google Scholar 

  22. Carrasco, N., Antes, L. M., Poonian, M. S. & Kaback, H. R. Biochemistry 25, 4486–4488 (1986).

    Article  CAS  Google Scholar 

  23. Wright, J. K., Seckler, R. & Overath, P. A. Rev. Biochem. 55, 225–248 (1986).

    Article  CAS  Google Scholar 

  24. Kaback, H. R. Ann. N.Y. Acad. Sci. 456, 291–304 (1986).

    Article  ADS  Google Scholar 

  25. Sarkar, H. K. et al. Meth. Enzym. 125, 214–230 (1986).

    Article  CAS  Google Scholar 

  26. West, I. C. Biochem. Soc. Trans. 8, 706–707 (1980).

    Article  CAS  Google Scholar 

  27. Konings, W. N. & Robillard, G. T. Proc. natn. Acad. Sci. U.S.A. 79, 5480–5484 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Batt, E. R., Abbott, R. E. & Schachter, D. J. biol Chem. 251, 7184–7190 (1976).

    CAS  PubMed  Google Scholar 

  29. Deziel, M. R., Jung, C. Y. & Rothstein, A. Biochim. biophys. Acta 819, 83–92 (1985).

    Article  CAS  Google Scholar 

  30. Beyreuther, K., Bieseler, B., Ehring, R. & Muller-Hill, B. in Methods in Protein Sequence Analysis (ed. Elzina, M.) 132–148 (Humana, Clifton, 1981).

    Google Scholar 

  31. Garnier, J., Osguthorpe, D. J. & Robson, B. J. molec. Biol. 120, 97–120 (1978).

    Article  CAS  Google Scholar 

  32. Feramisco, J. R., Glass, D. B. & Krebs, E. G. J. biol Chem. 255, 4240–4245 (1980).

    CAS  PubMed  Google Scholar 

  33. Cheng, H. C. et al. J. biol Chem. 261, 989–992 (1986).

    CAS  PubMed  Google Scholar 

  34. Chin, J. J., Jung, E. K. Y. & Jung, C. Y. J. biol. Chem. 261, 7101–7104 (1986).

    CAS  PubMed  Google Scholar 

  35. Carlson, T. A. & Chelm, B. K. Nature 322, 568–570 (1986).

    Article  ADS  CAS  Google Scholar 

  36. Stragier, P. & Patte, J. C. J. molec. Biol 168, 333–350 (1983).

    Article  CAS  Google Scholar 

  37. Macpherson, A. J. S., Jones-Mortimer, M. C. & Henderson, P. J. F. Biochem. J. 196, 269–283 (1981).

    Article  CAS  Google Scholar 

  38. Marchal, C., Greenblatt, J. & Hofnung, M. J. Bact. 136, 1109–1119 (1978).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiden, M., Davis, E., Baldwin, S. et al. Mammalian and bacterial sugar transport proteins are homologous. Nature 325, 641–643 (1987). https://doi.org/10.1038/325641a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325641a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing