Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels

Abstract

It has long been assumed that a rise in cytosolic free Ca2+, [Ca2+]i, is a necessary and sufficient event for the stimulation of a variety of cellular processes1,2. The development of a technique which allows monitoring of [Ca2+]i in small intact cells3 has led to a critical revision of this simple postulate4–7. We have recently shown that in neutrophils, Ca2+-ionophore-induced elevations of [Ca2+]i, quantitatively similar to those caused by chemotatic peptides, are ineffective in stimulating cell responses8, which suggests that an additional signal is required for receptor-mediated activation. Here we show that subthreshold concentrations of phorbol myristate acetate (PMA) and of a Ca2+ ionophore can quantitatively mimic the effect of a physiological agonist. However, PMA at higher concentrations can trigger NADPH-oxidase activity, exocytosis and protein phosphorylation, even when [Ca2+]i is lowered 10–20 times below the normal resting level. These results strongly suggest that activation of protein kinase C is sufficient, by itself, to induce NADPH-oxidase activation and exocytosis of secondary granules in neutrophils.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rubin, R. P. Calcium and Cellular Secretion (Plenum, New York, 1982).

    Book  Google Scholar 

  2. Gomperts, B. D. in Biological Membranes Vol. 5 (ed. Chapman, D.) 284–340 (Academic, New York, 1984).

    Google Scholar 

  3. Tsien, R. Y., Pozzan, T. & Rink, T. J., J. Cell Biol. 94, 325–334 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Rink, T. J., Smith, S. W. & Tsien, R. Y. FEBS Lett. 148, 21–26 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Rink, T. J., Sanchez, A. & Hallam, I. J. Nature 305, 317–319 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Pozzan, T., Arslan, P., Tsien, R. Y. & Rink, T. J. J. Cell Biol. 94, 335–340 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Meldolesi, J., Huttner, W. B., Tsien, R. Y. & Pozzan, T. Proc. natn. Acad. Sci. U.S.A. 81, 620–624 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Pozzan, T., Lew, D. P., Wollheim, C. B. & Tsien, R. Y. Science 221, 1413–1415 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Nishizuka, Y. Trends biochem. Sci. 8, 13–16 (1981).

    Article  Google Scholar 

  10. Kajikawa, N. et al. Biochem. biophys. Res. Commun. 116, 743–750 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Kaibuchi, K. et al. J. biol. Chem. 258, 6701–6704 (1983).

    CAS  PubMed  Google Scholar 

  12. Michell, R. Trends biochem. Sci. 8, 263–265 (1983).

    Article  CAS  Google Scholar 

  13. Yin, H. L. & Stossel, T. P. J. biol. Chem. 255, 9490–9493 (1980).

    CAS  PubMed  Google Scholar 

  14. Klee, C. B., Crouch, T. H. & Krinks, M. H. Proc. natn. Acad. Sci. U.S.A. 76, 6270–6273 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Pershandsingh, H. A., Landt, M. & McDonald, J. M. J. biol. Chem. 255, 8983–8986 (1980).

    Google Scholar 

  16. Niggli, V., Adunyah, E. S. & Carafoli, E. J. biol. Chem. 256, 8588–8592 (1981).

    CAS  PubMed  Google Scholar 

  17. Gillis, J. M., Thomason, D., Lefevre, J. & Kretsinger, R. H. J. Muscle Res. Cell Motility 3, 377–398 (1982).

    Article  CAS  Google Scholar 

  18. Burger, D., Stein, E. A. & Cox, J. A. J. biol. Chem. 258, 14733–14739 (1983).

    CAS  PubMed  Google Scholar 

  19. Castagna, M. et al. J. biol. Chem. 257, 7847–7851 (1982).

    CAS  PubMed  Google Scholar 

  20. Schneider, C., Zanetti, M. & Romeo, D. FEBS Lett. 127, 4–8 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Lew, D. P. & Stossel, T. P. J. clin. Invest. 67, 1–9 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Estensen, R. D., White, J. G. & Holmes, B. Nature 248, 347–348 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Gunther, G. R. J. biol. Chem. 256, 12040–12045 (1981).

    CAS  PubMed  Google Scholar 

  24. Niedel, J. E., Kuhn, L. J. & Vandenbark, G. R. Proc. natn. Acad. Sci. U.S.A. 8, 263–265 (1983).

    Google Scholar 

  25. Sando, J. J. et al. Fedn Proc. 42, 2250–2253 (1983).

    Google Scholar 

  26. Helfman, D. M., Appelbaum, B. D., Vogler, W. R. & Kuo, J. F. Biochem. biophys. Res. Commun. 111, 847–853 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Virgilio, F., Lew, D. & Pozzan, T. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature 310, 691–693 (1984). https://doi.org/10.1038/310691a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310691a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing