Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reflected infrared spectrum of a massive protostar in Orion

Abstract

The infrared source IRc2 (ref. 1) in the star-forming region Orion-KL is generally believed to contain a massive and very young star2. Its nature and evolutionary status, however, are difficult to determine because it is hidden from direct view by a dense disk-like envelope of gas and dust. Here we report observations of infrared radiation (at a wavelength of about 2 μm) that has escaped the surrounding dust in the polar direction, perpendicular to the plane of the disk, and then been reflected towards us by dust farther away from the star. The reflected spectrum contains absorption lines of neutral metallic atoms and carbon monoxide, which we interpret as indicating a source temperature of about 4,500 K. But, given the luminosity of the source, its radius must be at least 300 solar radii—too large to be attained with the modest gas-accretion rates in existing theories of massive-star formation. Whether the infrared radiation is coming from the protostar itself or the self-luminous accretion disk around it, the accretion rate must be around (5–15) × 10−3 solar masses per year, at least two orders of magnitude greater than is commonly assumed in models of star formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A K′-band (λcentre = 2.15 μm) image of the Orion-KL region taken in 1996 December.
Figure 2: The K-band spectra taken with OASIS on the OAO 1.9-m telescope in grating spectroscopy mode.

Similar content being viewed by others

References

  1. Rieke, G. H., Low, F. J. & Kleinmann, D. E. High-resolution maps of the Kleinmann–Low nebula in Orion. Astrophys. J. 186, L7–L11 (1973).

    Article  ADS  Google Scholar 

  2. Genzel, R. & Stutzki, J. The Orion molecular cloud and star-forming region. Annu. Rev. Astron. Astrophys. 27, 41–85 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Wynn-Williams, C. G., Genzel, R., Becklin, E. E. & Downes, D. The Kleinmann–Low nebula: an infrared cavity. Astrophys. J. 281, 172–183 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Snyder, L. E. & Buhl, D. Detection of possible maser emission near 3.48 millimeters from an unidentified molecular species in Orion. Astrophys. J. 189, L31–L33 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Hasegawa, T. et al. in Masers, Molecules and Mass Outflows in Star Forming Regions (ed. Haschick, A. D.) 275–287 (Haystack Observatory, Massachusetts, (1986)).

    Google Scholar 

  6. Elitzur, M. Astronomical Masers (Kluwer, Dordrecht, (1992)).

    Book  Google Scholar 

  7. Hasegawa, T. et al. CS around Orion-KL: a large rotating disk. Astrophys. J. 283, 117–122 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Wright, M. C. H., Plambeck, R. L. & Wilner, D. J. Amultiline aperture synthesis study of Orion-KL. Astrophys. J. 469, 216–237 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Erickson, N. R. et al. Detection of bipolar CO outflow in Orion. Astrophys. J. 261, L103–L107 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Wright, M. C. H., Plambeck, R. L., Vogel, S. N., Ho, P. T. P. & Welch, W. J. Source of the high-velocity molecular flow in Orion. Astrophys. J. 267, L41–L45 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Minchin, N. R. et al. Near-infrared imaging polarimetry of bipolar nebulae–I. The BN-KL region of OMC-1. Mon. Not. R. Astron. Soc. 248, 715–729 (1991).

    Article  ADS  Google Scholar 

  12. Beckwith, S., Persson, S. E., Neugebauer, G. & Becklin, E. E. Observations of the molecular hydrogen emission from the Orion nebula. Astrophys. J. 223, 464–470 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Kleinmann, S. G. & Hall, D. N. B. Spectra of late-type standard stars in the region 2.0–2.5 microns. Astrophys. J. Suppl. Ser. 62, 501–517 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Ali, B., Carr, J. S., DePoy, D. L., Frogel, J. A. & Sellgren, K. Medium-resolution near-infrared (2.15–2.35 μm) spectroscopy of late-type main-sequence stars. Astron. J. 110, 2415–2424 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Greene, T. P. & Lada, C. J. Near-infrared spectra and the evolutionary status of young stellar objects: results of a 1.1–2.4 μm survey. Astron. J. 112, 2184–2221 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Draine, B. T. & Lee, H. M. Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89–108 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Mathis, J. S. Intestellar dust and extinction. Annu. Rev. Astron. Astrophys. 28, 37–70 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Plambeck, R. L., Wright, M. C. H. & Carlstrom, J. E. Velocity structrure of the Orion-IRc2 SiO maser: evidence for an 80 AU diameter circumstellar disk. Astrophys. J. 348, L65–L68 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Morita, K.-I., Hasegawa, T., Ukita, N., Okumura, S. K. & Ishiguro, M. Accurate positions of SiO masers in active star-forming regions: Orion-KL, W51-IRS2, and Sagittarius-B2 MD5. Publ. Astron. Soc. Jpn 44, 373–380 (1992).

    ADS  CAS  Google Scholar 

  20. Palla, F. & Stahler, S. W. The pre-main sequence evolution of intermediate-mass stars. Astrophys. J. 418, 414–425 (1993).

    Article  ADS  CAS  Google Scholar 

  21. 1. Snell, R. L., Scoville, N. Z., Sanders, D. B. & Erickson, N. R. High-velocity molecular jets. Astrophys. J. 284, 176–193 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Shu, F. et al. Magnetocentrifugally driven flows from young stars and disks. I. A generalized model. Astrophys. J. 429, 781–796 (1994).

    Article  ADS  Google Scholar 

  23. Calvet, N., Hartmann, L. & Kenyon, S. J. On the near-infrared spectrum of FU Orionis. Astrophys. J. 383, 752–756 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Hartmann, L. & Kenyon, S. J. The FU Orionis phenomenon. Annu. Rev. Astron. Astrophys. 34, 207–240 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Gezari, D. Y. Mid-infrared imaging of Orion BN/KL: astrometry of IRc2 and the SiO maser. Astrophys. J. 396, L43–L47 (1992).

    Article  ADS  Google Scholar 

  26. Menten, K. M. & Reid, M. J. What is powering the Orion Kleinmann–Low infrared nebula? Astrophys. J. 445, L157–L160 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Dougados, C., Léna, P., Ridgway, S. T., Christou, J. C. & Probst, R. G. Near-infrared imaging of the Becklin–Neugebauer-IRc2 region in Orion with subarcsecond resolution. Astrophys. J. 406, 112–121 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Okumura and E. Nishihara for their kind help during the observations. J.-I.M. was supported by research fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ichi Morino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morino, JI., Yamashita, T., Hasegawa, T. et al. Reflected infrared spectrum of a massive protostar in Orion. Nature 393, 340–342 (1998). https://doi.org/10.1038/30678

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30678

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing