Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breaking planetary waves in the stratosphere

Abstract

Satellite-borne IR radiometers are turning the Earth's stratosphere into one of the best available outdoor laboratories for observing the large-scale dynamics of a rotating, heterogeneous fluid under gravity. New insight is being gained not only into stratospheric dynamics as such, with its implications for pollutant behaviour and the ozone layer, but also indirectly into the dynamics of the troposphere, with its implications for weather forecasting. Similar dynamical regimes occur in the oceans and in stellar interiors. A key development has been the construction of coarse-grain maps of the large-scale distribution of potential vorticity in the middle stratosphere. Potential vorticity is a conservable quantity which has a central role in the dynamical theory, but is difficult to calculate accurately from observational data. We present the first mid-stratospheric potential vorticity maps which appear good enough to make visible the ‘breaking’ of planetary or Rossby waves, a phenomenon ubiquitous in nature and arguably one of the most important dynamical processes affecting the stratosphere as a whole.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pick, D. R. & Brownscombe, J. L. Adv. Space Res. 1, 247–260 (1981).

    Article  ADS  Google Scholar 

  2. Grahame, N. S. & Clough, S. A. Met. O. 20 Tech. Note, available from U. K. Meteorological Office (1983).

  3. Simmons, A. J. & Strüfing, R. Q. Jl R. met. Soc. 109, 81–111 (1982).

    Article  ADS  Google Scholar 

  4. Gille, J. C. & Russell, J. M. J. geophys. Res. (submitted).

  5. Dunkerton, T. J. J. atmos. Sci. 38, 2354–2364 (1981).

    Article  ADS  Google Scholar 

  6. Stevens, D. E. J. atmos. Sci. 40, 882–893 (1983).

    Article  ADS  Google Scholar 

  7. Charney, J. G. & Stern, M. E. J. atmos. Sci. 19, 159–172 (1962) [see Eq. (2.31)].

    Article  ADS  Google Scholar 

  8. Simmons, A. J. Q. Jl R. met. Soc. 100, 76–108 (1974).

    Article  ADS  Google Scholar 

  9. Stewartson, K. Geophys. Astrophys. Fluid Dyn. 9, 185–200 (1978).

    Article  ADS  Google Scholar 

  10. Warn, T. & Warn, H. Stud. appl. Math. 59, 37–71 (1978).

    Article  MathSciNet  Google Scholar 

  11. McIntyre, M. E. Jl met. Soc. Jap. 60, 37–65 (1982).

    Article  Google Scholar 

  12. Hsu, C.-P. F. J. atmos. Sci. 38, 189–214 (1981).

    Article  ADS  Google Scholar 

  13. Matsuno, T. Proc. US–Japan Seminar on the Dynamics of the Middle Atmosphere (eds Holton, J. R. & Matsuno, T., Terrapub, Tokyo (in the press).

  14. Allam, R. J. & Tuck, A. F. Q. Jl. R. met. Soc. (submitted).

  15. Rhines, P. B. A. Rev. Fluid Mech. 11, 401–441 (1979).

    Article  ADS  Google Scholar 

  16. McIntyre, M. E. & Palmer, T. N. J. atmos. terr. Phys. (in the press).

  17. Gill, A. E. Atmosphere-Ocean Dynamics, 13.9 (Academic, New York, 1982).

    Google Scholar 

  18. Edmon, H. J. et al. J. atmos. Sci. 37, 2600–2616 (1980) (corrigendum 38, 1115; 1981).

    Article  ADS  Google Scholar 

  19. Hoskins, B. J. in Large-scale Dynamical Processes in the Atmosphere (eds Hoskins, B. J. & Pearce, R. P.) 169–199 (Academic, New York, 1983).

    Google Scholar 

  20. Holton, J. R. J. atmos. Sci. 39, 791–799 (1982).

    Article  ADS  Google Scholar 

  21. Andrews, D. G. & McIntyre, M. E. J. Fluid Mech. 89, 609–646 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  22. Turner, J. S. Buoyancy Effects in Fluids, 9.1.1. (Cambridge University Press, 1973).

    Book  Google Scholar 

  23. Plumb, R. A. J. atmos. Sci. 38, 2514–2531 (1981).

    Article  ADS  Google Scholar 

  24. Charney, J. G. & DeVore, J. G. J. atmos. Sci. 36, 1205–1216 (1979).

    Article  ADS  Google Scholar 

  25. Labitzke, K. Beilage zur Berliner Wetterkarte, SO 10/79 (Institut für Meteorologie der Freien Universität Berlin, 1979).

    Google Scholar 

  26. Madden, R. A. & Labitzke, K. J. geophys. Res. 86 C, 1247–1254 (1981).

    Article  ADS  Google Scholar 

  27. Labitzke, K. Mon. Weath. Rev. 105, 762–770 (1977).

    Article  ADS  Google Scholar 

  28. Butchart, N. et al. Q. Jl. R. met. Soc. 108, 475–502 (1982).

    Article  ADS  Google Scholar 

  29. O'Neill, A. & Taylor, B. F. Q. Jl. R. met. Soc. 105, 71–92 (1979).

    Article  ADS  Google Scholar 

  30. Palmer, T. N. & Hsu, C.-P. F. J. atmos. Sci. 40, 909–928 (1983).

    Article  ADS  Google Scholar 

  31. Fels, S. B. et al. J. atmos. Sci. 37, 2265–2297 (1980).

    Article  ADS  CAS  Google Scholar 

  32. Harwood, R. S. Phil. Trans. R. Soc. A296, 103–127 (1980).

    Article  ADS  CAS  Google Scholar 

  33. Matsuno, T. Pure appl. Geophys. 118, 189–216 (1980).

    Article  ADS  Google Scholar 

  34. Danielsen, E. F. J. atmos. Sci. 38, 1319–1339 (1981).

    Article  ADS  Google Scholar 

  35. Holton, J. R. J. geophys. Res. 86 C, 11989–11994 (1981).

    Article  ADS  CAS  Google Scholar 

  36. Tung, K. K. J. atmos. Sci. 39, 2330–2355 (1982).

    Article  ADS  Google Scholar 

  37. McIntyre, M. E. Phil. Trans. R. Soc. A296, 129–148 (1980).

    Article  ADS  CAS  Google Scholar 

  38. Shutts, G. J. Q. Jl. R. met. Soc. (in the press).

  39. Illari, L. & Marshall, J. C. J. atmos. Sci. (in the press).

  40. Holland, W. R., Keffer, T. & Rhines, P. B. Nature (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIntyre, M., Palmer, T. Breaking planetary waves in the stratosphere. Nature 305, 593–600 (1983). https://doi.org/10.1038/305593a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305593a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing