Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic responses of terrestrial ecosystem carbon cycling to global climate change

Abstract

Terrestrial ecosystems and the climate system are closely coupled, particularly by cycling of carbon between vegetation, soils and the atmosphere. It has been suggested1,2 that changes in climate and in atmospheric carbon dioxide concentrations have modified the carbon cycle so as to render terrestrial ecosystems as substantial carbon sinks3,4; but direct evidence for this is very limited5,6. Changes in ecosystem carbon stocks caused by shifts between stable climate states have been evaluated7,8, but the dynamic responses of ecosystem carbon fluxes to transient climate changes are still poorly understood. Here we use a terrestrial biogeochemical model9, forced by simulations of transient climate change with a general circulation model10, to quantify the dynamic variations in ecosystem carbon fluxes induced by transient changes in atmospheric CO2 and climate from 1861 to 2070. Wepredict that these changes increase global net ecosystem production significantly, but that this response will decline as the CO2 fertilization effect becomes saturated and is diminished by changes in climatic factors. Thus terrestrial ecosystem carbon fluxes both respond to and strongly influence the atmospheric CO2 increase and climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The scenarios.
Figure 2: The variations in global net primary production (NPP, Gt C yr−1), net ecosystem production (NEP, Gt C yr−1), and carbon stocks in vegetation (VGC, GtC) and soils (SOC, Gt C) resulting from atmospheric CO2 increase and climate change.
Figure 3: Variations in global net ecosystem production (NEP, Gt C yr−1) responding to stabilization of atmospheric CO2 at 450, 550 and 650 p.p.m.v., or continual increase.
Figure 4: Spatial and seasonal variations in net ecosystem production (NEP) inresponse to atmospheric CO2 increase and climate change.

Similar content being viewed by others

References

  1. Amthor, J. S. Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biol. 1, 243–247 (1995).

    Article  ADS  Google Scholar 

  2. Houghton, R. A. & Woodwell, G. M. Global climatic change. Sci. Am. 260, 36–47 (1989).

    Article  CAS  Google Scholar 

  3. Ciais, P., Tan, P. P., Trolier, M., White, J. W. C. & Francy, R. J. Alarge northern hemisphere terrestrial CO2sink indicated by 13C/12C of atmospheric CO2. Science 269, 1098–1102 (1995).

    Article  CAS  ADS  Google Scholar 

  4. Keeling, R. F., Piper, S. C. & Heimann, M. Global and hemispheric CO2sinks deduced from changes in atmospheric O2concentration. Nature 381, 218–221 (1996).

    Article  CAS  ADS  Google Scholar 

  5. Wofsy, S. C., Munger, J. E., Bakwin, P. S., Daube, B. C. & Moore, T. R. Net CO2uptake by northern woodlands. Science 260, 1314–1317 (1993).

    Article  CAS  ADS  Google Scholar 

  6. Grace, J. et al. Carbon dioxide uptake by undisturbed tropical forests, 1992 and 1993. Science 270, 778–780 (1995).

    Article  CAS  ADS  Google Scholar 

  7. Melillo, J. M. in Global Change and Terrestrial Ecosystems (eds Walker, B. & Steffen, W.) 431–450 (Cambridge Univ. Press, (1996)).

    Google Scholar 

  8. Smith, T. M. & Shugart, H. H. The transient response of terrestrial carbon storage to a perturbed climate. Nature 361, 523–526 (1993).

    Article  ADS  Google Scholar 

  9. Cao, M. K. & Woodward, F. I. Net primary and ecosystem productions and carbon stocks of terrestrial ecosystems and their response to climate change. Global Change Biol. 4, 185–198 (1998).

    Article  ADS  Google Scholar 

  10. Mitchell, J. F. B., Johns, T. C., Gregory, J. M. & Tett, S. F. B. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376, 501–504 (1995).

    Article  CAS  ADS  Google Scholar 

  11. Houghton, J. T., Callander, B. A. & Varney, S. K. (eds) Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment (Cambridge Univ. Press, (1992)).

    Google Scholar 

  12. Johns, T. C. et al. The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Clim. Dyn. 13, 103–134 (1997).

    Article  Google Scholar 

  13. Jones, P. D. Hemispheric surface air temperature variations: a reanalysis and an update to 1993. J.Clim. 7, 1794–1802 (1994).

    Article  ADS  Google Scholar 

  14. Oechel, W. C. et al. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361, 520–523 (1993).

    Article  ADS  Google Scholar 

  15. Townsend, A. R., Vitousek, P. M. & Holland, E. A. Tropical soils could dominate the short-term carbon cycle feedback to increased global temperature. Clim. Change 22, 293–303 (1992).

    Article  CAS  ADS  Google Scholar 

  16. Dai, A. & Fung, I. Y. Can climate variability contribute to the “missing” CO2sink? Glob. Biogeochem. Cycles 7, 599–609 (1993).

    Article  CAS  ADS  Google Scholar 

  17. Braswell, B. H., Schimel, D. S., Linder, E. & Moore, B. The response of global terrestrial ecosystems to interannual temperature variability. Science 278, 870–873 (1997).

    Article  CAS  ADS  Google Scholar 

  18. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    Article  CAS  ADS  Google Scholar 

  19. Lloyd, J. et al. Asimple calibrated model of Amazonian rainforest productivity based on leaf biochemical properties. Plant Cell Environ. 18, 1129–1145 (1995).

    Article  Google Scholar 

  20. Oechel, W. C., Vourlitis, G. & Hastings, S. J. Cold season CO2emission from Arctic soils. Glob. Biogeochem. Cycles 11, 151–162 (1997).

    Article  Google Scholar 

  21. Zimov, S. A. et al. Siberian CO2efflux in winter as a CO2source and cause of seasonality in atmospheric CO2. Clim. Change 33, 111–120 (1996).

    Article  CAS  ADS  Google Scholar 

  22. Houghton, R. A. in The Global Carbon Cycle (ed. Heimann, M.) 139–157 (Springer, New York, (1993)).

    Book  Google Scholar 

  23. Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).

    Article  CAS  ADS  Google Scholar 

  24. Melillo, J. M., Fruce, P. A., Houghton, R. A., Moore, B. & Skole, D. L. Land-use changes in the Soviet Union between 1850 and 1980: causes of a net release of CO2to the atmosphere. Tellus B 40, 116–128 (1988).

    Article  ADS  Google Scholar 

  25. Holland, E. A. et al. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J. Geophys. Res. 102, 15849–15866 (1997).

    Article  CAS  ADS  Google Scholar 

  26. Gower, S. T., McMurtrie, R. E. & Durty, D. Aboveground net primary production decline with stand age: potential causes. Trends Ecol. Evol. 11, 378–383 (1996).

    Article  CAS  Google Scholar 

  27. McGuire, A. D., Melillo, J. M. & Joyce, L. A. The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. Annu. Rev. Ecol. Syst. 26, 473–503 (1995).

    Article  Google Scholar 

  28. Schulze, E.-D. Flux control at the ecosystem level. Trends Ecol. Evol. 10, 40–43 (1994).

    Article  Google Scholar 

  29. Foley, J. A. et al. An integrated biosphere model of land-surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles 10, 603–628 (1996).

    Article  CAS  ADS  Google Scholar 

  30. Pitelka, L. F.et al. Plant migration and climate change. Am. Sci. 85, 464–473 (1997).

    ADS  Google Scholar 

Download references

Acknowledgements

This work is being supported by the Natural Environment Research Council, UK. We thank R. Betts, the Hadley Centre for Climate Prediction and Research, UK for supplying the climatic and CO2 data, P. L. Mitchell and D. J. Beerling for their critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingkui Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, M., Woodward, F. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252 (1998). https://doi.org/10.1038/30460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30460

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing