Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a cephalosporin synthase

Abstract

Penicillins and cephalosporins are among the most widely used therapeutic agents. These antibiotics are produced from fermentation-derived materials as their chemical synthesis is not commercially viable. Unconventional steps in their biosynthesis are catalysed by Fe(II)-dependent oxidases/oxygenases; isopenicillin N synthase (IPNS)1,2 creates in one step the bicyclic nucleus of penicillins, and deacetoxycephalosporin C synthase (DAOCS) catalyses the expansion of the penicillin nucleus into the nucleus of cephalosporins. Both enzymes use dioxygen-derived ferryl intermediates in catalysis but, in contrast to IPNS, the ferryl form of DAOCS is produced by the oxidative splitting of a co-substrate, 2-oxoglutarate (α-ketoglutarate). This route of controlled ferryl formation and reaction is common to many mononuclear ferrous enzymes3, which participate in a broader range of reactions than their well-characterized counterparts, the haem enzymes. Here we report the first crystal structure of a 2-oxoacid-dependent oxygenase. High-resolution structures for apo-DAOCS, the enzyme complexed with Fe(II), and with Fe(II) and 2-oxoglutarate, were obtained from merohedrally twinned crystals. Using a model based on these structures, we propose a mechanism for ferryl formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Comparison of the structures of deacetoxycephalosporin C synthase (DAOCS) and isopenicillin N synthase (IPNS).
Figure 3: Structure of the active site in DAOCS.
Figure 4: Scheme to show the proposed mechanism for the formation of the ferryl intermediate in DAOCS and related 2-oxoacid-dependent ferrous enzymes.

Similar content being viewed by others

References

  1. Roach, P. L.et al. The crystal structure of isopenicillin N synthase, first of a new structural family of enzymes. Nature 375, 700–704 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Roach, P. L.et al. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387, 827–830 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Hegg, E. L. & Que, L. The 2-His-1-carboxylate facial triad—an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur. J. Biochem. 250, 625–629 (1997).

    Article  CAS  Google Scholar 

  4. Brotzu, G. Richerche su di un nuovo antibiotico. Lavori Istituto Igiene Cagliari 1–11 (1948).

  5. Newton, G. G. F. & Abraham, E. P. Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175, 548 (1955).

    Article  ADS  CAS  Google Scholar 

  6. Abraham, E. P. & Newton, G. G. F. The structure of cephalosporin C. Biochem. J. 79, 377–393 (1961).

    Article  CAS  Google Scholar 

  7. Hodgkin, D. C. & Maslen, E. N. The X-ray analysis of the structure of cephalosporin C. Biochem. J. 79, 393–402 (1961).

    Article  CAS  Google Scholar 

  8. Abraham, E. P. & Newton, G. G. F. Acomparison of the action of penicillinase on benzylpenicillin and cephalosporin N and the competitive inhibition of penicillinase by cephalosporin C. Biochem. J. 63, 628–634 (1956).

    Article  CAS  Google Scholar 

  9. Baldwin, J. E. & Schofield, C. J. in The Chemistry of β-lactams(ed. Page, M. I.) 1–78 (Blackie, London, (1992)).

    Book  Google Scholar 

  10. Schofield, C. J.et al. Proteins of the penicillin biosynthesis pathway. Curr. Opin. Struct. Biol. 7, 857–864 (1997).

    Article  CAS  Google Scholar 

  11. Yoshida, M.et al. Cell-free expansion of penicillin N to deacetoxycephalosporin C by Cephalosporium acremonium CW-19 and its mutants. Proc. Natl Acad. Sci. USA 75, 6253–6257 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Dotzlaf, J. E. & Yeh, W. K. Purification and properties of deacetoxycephalosporin C synthase from recombinant Escherichia coli and its comparison with the native enzyme purified from Streptomyces clavuligerus. J. Biol. Chem. 264, 10219–10227 (1989).

    CAS  PubMed  Google Scholar 

  13. Kovacevic, S., Weigel, B. J., Tobin, M. B., Ingolia, T. D. & Miller, J. R. Cloning, characterization, and expression in Escherichia coli of the Streptomyces clavuligerus gene encoding deacetoxycephalosporin C synthetase. J. Bacteriol. 171, 754–760 (1989).

    Article  CAS  Google Scholar 

  14. Prescott, A. G. Adilemma of dioxygenases (or where biochemistry and molecular biology fail to meet). J. Exp. Bot. 44, 849–861 (1993).

    Article  CAS  Google Scholar 

  15. Lester, D. R., Ross, J. J., Davies, P. J. & Reid, J. B. Mendel's stem length gene (Le) encodes a gibberellin 3-β-hydroxylase. Plant Cell 9, 1435–1443 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Landman, O., Borovok, I., Aharonowitz, Y. & Cohen, G. The glutamine ligand in the ferrous iron active site of isopenicillin N synthase of Streptomyces jumonjinesis is not essential for catalysis. FEBS Lett. 405, 172–174 (1997).

    Article  CAS  Google Scholar 

  17. Myllyharju, J. & Kivirikko, K. I. Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J. 16, 1173–1180 (1997).

    Article  CAS  Google Scholar 

  18. Zhang, Z.-H., Barlow, J. N., Baldwin, J. E. & Schofield, C. J. Metal-catalyzed oxidation and mutagenesis studies on the iron(II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Biochemistry 36, 15999–16007 (1997).

    Article  CAS  Google Scholar 

  19. Morgan, N.et al. Substrate specificity of recombinant Streptomyces clavuligerus deacetoxycephalosporin C synthase. Bioorg. Med. Chem. Letts. 4, 1595–1600 (1994).

    Article  CAS  Google Scholar 

  20. Fisher, R. G. & Sweet, R. M. Treatment of diffraction data from protein crystals twinned by merohedry. Acta Crystallogr. A 36, 755–760 (1980).

    Article  ADS  Google Scholar 

  21. Otwinowski, Z. in Data Collection and Processing(eds Sawyer, L., Isaacs, N. W. & Bailey, S.) DL/SCI/R34, 55–62 (Daresbury Laboratory, Warrington, UK, (1993)).

    Google Scholar 

  22. The CCP4 suite: programs for protein crystallography Acta Crystallogr. D 50, 760–763 (1994).

  23. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATP-ase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  24. Perrakis, A., Sixma, T. K., Wilson, K. S. & Lamzin, V. S. wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Crystallogr. D 53, 448–455 (1997).

    Article  CAS  Google Scholar 

  25. Lamzin, V. S. & Wilson, K. S. Automated refinement of protein molecules. Acta Crystallogr. D 49, 129–147 (1993).

    Article  CAS  Google Scholar 

  26. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  27. Jones, T. A., Bergdoll, M. & Kjeldgaard, M. in Crystallographic and Modelling Methods in Molecular Design(eds Bugg, C. & Ealick, S.) 189–190 (Springer, New York, (1990)).

    Book  Google Scholar 

  28. Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  29. Sheldrick, G. M. & Schneider, T. R. SHELXL: High-resolution refinement. Methods Enzymol. 277, 319–343 (1997).

    Article  CAS  Google Scholar 

  30. Esnouf, R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Å. Danielsson and R. Bhikhabhai (Pharmacia Biotech, Uppsala) for improved protein purification procedures; G. Larsson and A. M. Valegård for bigger and better crystals; D.van der Spoel, C. M. R. Wouts, E. Wikman and G. Kleywegt for discussion; C. Andersson for in-house X-ray facilities; V. Biou, Z.-H. Zhang, P. L. Roach, J. Keeping and J. Pitt for their help, and Y. Cerelius and A. Svensson for data collection facilities, at MAX-Lab in Lund; and A. Dahl for a stimulating environment. This work was supported by EU-BIOTECH and the Swedish Research Councils, MFR and NFR. The Oxford Centre for Molecular Sciences is supported by BBSRC and MRC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher J. Schofield or Inger Andersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valegård, K., van Scheltinga, A., Lloyd, M. et al. Structure of a cephalosporin synthase. Nature 394, 805–809 (1998). https://doi.org/10.1038/29575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29575

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing