Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNA synthesis and cytoplasmic polyadenylation in the one-cell mouse embryo

Abstract

The time of onset of transcriptional activity in the early mammalian embryo is unclear. RNA synthesis has been shown to occur at the two-cell stage in the mouse1–4 and at the two- to four-cell stage in the rabbit5, but the period immediately following fertilization has proved largely inaccessible to biochemical characterization of transcription because of the low permeability of early embryos to exogenous precursors such as 3H-uridine1–7. This difficulty, and the failure to detect RNA polymerase activity in the pronuclei of one-cell mouse embryos8, suggested that the embryonic genome was transcriptionally inactive until some time after the first cleavage. To investigate this issue further, we have now incubated one-cell pronuclear embryos with 3H-adenosine, which is taken up about 1,000 times faster than uridine3. Three labelled RNA species could be identified. The major product is large, heterodisperse, poly(A) RNA. High-molecular-weight poly(A)+ RNA is also heavily labelled but this is mostly due to cytoplasmic polyadenylation of previously non-polyadenylated, stored RNA. A significant amount of label is incorporated into the -CCA termini of transfer RNA but some new synthesis of tRNA also takes place. No label was found in ribosomal RNA at the one-cell stage but synthesis of mature rRNA species was evident in the two-cell embryo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Woodland, H. R. & Graham, C. F. Nature 221, 327–332 (1969).

    Article  ADS  CAS  Google Scholar 

  2. Knowland, J. & Graham, C. J. Embryol. exp. Morph. 27, 167–176 (1972).

    CAS  PubMed  Google Scholar 

  3. Clegg, K. B. & Pikó, L. Devl Biol. 58, 76–95 (1977).

    Article  CAS  Google Scholar 

  4. Levey, I. L., Stull, G. B. & Brinster, R. L. Devl Biol. 64, 140–148 (1978).

    Article  CAS  Google Scholar 

  5. Cotton, R. W., Manes, C. & Hamkalo, B. A. Chromosoma 79, 169–178 (1980).

    Article  CAS  Google Scholar 

  6. Daentl, D. L. & Epstein, C. J. Devl Biol. 24, 428–442 (1971).

    Article  CAS  Google Scholar 

  7. Young, R. J., Sweeney, K. & Bedford, J. M. J. Embryol. exp. Morph. 44, 133–148 (1978).

    CAS  PubMed  Google Scholar 

  8. Moore, G. P. M. J. Embryol. exp. Morph. 34, 291–298 (1975).

    CAS  PubMed  Google Scholar 

  9. Barlow, J. J., Mathias, A. P., Williamson, R. & Gammack, D. B. Biochem. biophys. Res. Commun. 13, 61–66 (1963).

    Article  CAS  Google Scholar 

  10. Bellamy, A. R. & Ralph, R. K. Meth. Enzym. 12A, 156–160 (1968).

    Article  CAS  Google Scholar 

  11. Pikó, L. & Chase, D. G. J. Cell Biol. 58, 357–378 (1973).

    Article  Google Scholar 

  12. Randerath, E., Chia, L. S. Y., Morris, A. P. & Randerath, K. Cancer Res. 34, 643–653 (1974).

    CAS  PubMed  Google Scholar 

  13. Deutscher, M. P. Prog. Nucleic Acid Res. molec. Biol. 13, 51–92 (1973).

    Article  CAS  Google Scholar 

  14. Vournakis, J. N., Gelinas, R. E. & Kafatos, F. C. Cell 3, 265–273 (1974).

    Article  CAS  Google Scholar 

  15. Pikó, L. & Clegg, K. B. Devl Biol. 89, 362–378 (1982).

    Article  Google Scholar 

  16. Slater, I., Gillespie, D. & Slater, D. W. Proc. natn. Acad. Sci. U.S.A. 70, 406–411 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Wilt, F. H. Proc. natn. Acad. Sci. U.S.A. 70, 2345–2349 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Wilt, F. H. Cell 11, 673–681 (1977).

    Article  CAS  Google Scholar 

  19. Dolecki, G. J., Duncan, R. F. & Humphreys, T. Cell 11, 339–344 (1977).

    Article  CAS  Google Scholar 

  20. Davis, F. C. & Davis, R. W. Devl Biol. 66, 86–96 (1978).

    Article  CAS  Google Scholar 

  21. Young, R. J. & Sweeney, K. J. Embryol. exp. Morph. 49, 139–152 (19791).

    CAS  PubMed  Google Scholar 

  22. Engel, W., Zenzes, M. T. & Schmid, M. Hum. Genet. 38, 57–63 (1977).

    Article  CAS  Google Scholar 

  23. Hansmann, I., Gebauer, J., Bihl, L. & Grimm, T. Expl Cell Res. 114, 263–268 (1978).

    Article  CAS  Google Scholar 

  24. Bachvarova, R. & De Leon, V. Devl Biol. 74, 1–8 (1980).

    Article  CAS  Google Scholar 

  25. Braude, P., Pelham, H., Flach, G. & Lobatto, R. Nature 282, 102–105 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Loening, U. E. Biochem. J. 113, 131–138 (1969).

    Article  CAS  Google Scholar 

  27. Randerath, K. & Randerath, E. Meth. Enzym. 12A, 323–347 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clegg, K., Pikó, L. RNA synthesis and cytoplasmic polyadenylation in the one-cell mouse embryo. Nature 295, 342–345 (1982). https://doi.org/10.1038/295342a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295342a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing