Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Late Precambrian Keweenawan asymmetric reversals

Abstract

Palaeopoles from the Keweenawan (1,200–1,000 Myr) rocks of the Lake Superior region form the western and eastern arms of the ‘Great Logan Palaeomagnetic Loop’1,5 (Fig. 1a). This is defined by both normal (N) and reversed (R) poles which are the consequence of at least two geomagnetic reversals4,6,7. The younger one (R→N) has been detected throughout the Lake Superior region from various rock types.1–6 The older reversal (N→R) is only recorded in the lowermost Keweenawan lavas in the southern part of the lake.8 Wherever found, the reversals depart from the 180° symmetry (Fig. 1a)2–6. Due to these asymmetries, the Logan Loop has large segments that are devoid of data and thus the geophysical interpretations of the Loop (or ‘hairpin’) critically depend on the cause of the reversal asymmetry.4 Four models11 (secondary component6, apparent polar wander1–5, Wilson's dipole offset5,7,9 and non-dipole field configuration1,3,10) have been put forward to explain the asymmetries. Here we demonstrate that the two-dipole field configuration model can explain the reversal asymmetries and discuss the global effects of this model in the light of worldwide late Precambrian palaeomagnetic data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Robertson, W. A. & Fahrig, W. Can J. Earth Sci. 8, 1355–1372 (1971).

    Article  ADS  Google Scholar 

  2. DuBois, P. M. Bull. Can. geol. Surv. 71, 1–75 (1962).

    Google Scholar 

  3. Pesonen, L. J. Bull. geol. Soc. Finl. 51, 27–44 (1979).

    Article  Google Scholar 

  4. Pesonen, L. J. & Halls, H. C. Can. J. Earth Sci. 16, 2136–2149 (1979).

    Article  ADS  Google Scholar 

  5. Robertson, W. A. Can. J. Earth Sci. 10, 1541–1555 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Palmer, H. C. Can. J. Earth Sci. 7, 1410–1436 (1970).

    Article  ADS  Google Scholar 

  7. Pesonen, L. J. thesis, Univ. Toronto (1978).

  8. Books, K. G. U.S. geol. Surv. Prof. Pap. 600 -D, 245–254 (1968).

    Google Scholar 

  9. Wilson, R. L. Geophys. J. R. astr. Soc. 28, 295–304 (1972).

    Article  ADS  Google Scholar 

  10. Massey, N. W. D. Can. J. Earth Sci. 16, 373–375 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Palmer, H. C. et al. Can. J. Earth Sci. 18, 599–618 (1981).

    Article  ADS  Google Scholar 

  12. Nevanlinna, H. J. Geomagn. Geoelectr. 32, 483–506 (1980).

    Article  ADS  Google Scholar 

  13. Watkins, N. D. & Richardson, A. in Proc. of the Takesi Nagata Conf., 145–171 (1974).

  14. Harrison, C. G. A. & Ramirez, E. J. Geomagn. Geoelectr. 27, 139–151 (1975).

    Article  ADS  Google Scholar 

  15. Coupland, D. H. & Van der Voo, R. J. geophys. Res. 85, 3529–3548 (1980).

    Article  ADS  Google Scholar 

  16. Piper, J. D. A. & Stearn, J. E. F. Phys. Earth planet. Inter. 14, 345–358 (1977).

    Article  ADS  Google Scholar 

  17. McElhinny, M. W. & Merrill, R. T. Rev. Geophys. Space Phys. 13, 687–708 (1975).

    Article  ADS  Google Scholar 

  18. Berger, G. W. et al. Nature 277, 46–77 (1979).

    Article  ADS  Google Scholar 

  19. Watts, D. R. et al. J. geophys. Res. 85, 5316–5333 (1980).

    Article  ADS  Google Scholar 

  20. Hubbard, T. P. thesis, Univ. Liverpool (1971).

  21. Carmichael, C. M. Earth planet. Sci. Lett. 3, 351–354 (1968).

    Article  ADS  Google Scholar 

  22. Piper, J. D. A. Geophys. J. R. astr. Soc. 40, 313–344 (1975).

    Article  ADS  Google Scholar 

  23. Roy, J. L. & Robertson, W. A. J. geophys. Res. 83, 1289–1304 (1978).

    Article  ADS  Google Scholar 

  24. Vlasov, A. Ya. & Popova, A. V. Izv. Earth Phys. 2, 63–70 (1968).

    Google Scholar 

  25. Elston, D. P. & Grommé, C. S. EOS 60, 236, (1979).

    Google Scholar 

  26. Elston, D. P. & Bressler, S. L. J. geophys. Res. 85, 328–339 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesonen, L., Nevanlinna, H. Late Precambrian Keweenawan asymmetric reversals. Nature 294, 436–439 (1981). https://doi.org/10.1038/294436a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294436a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing