Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the spliceosomal U2B″–U2A′ protein complex bound to a fragment of U2 small nuclear RNA

Abstract

We have determined the crystal structure at 2.4 å resolution of a ternary complex between the spliceosomal U2B″/U2A′ protein complex and hairpin-loop IV of U2 small nuclear RNA. Unlike its close homologue the U1A protein, U2B″ binds to its cognate RNA only in the presence of U2A′, which contains leucine-rich repeats in its sequence. The concave surface of a parallel β-sheet within the leucine-rich-repeat region of U2A′ interacts with the ribonucleoprotein domain of U2B″ on the surface opposite its RNA-binding surface. The basic carboxy-terminal region of U2A′ interacts with the RNA stem. The crystal structure reveals how protein–protein interaction regulates RNA-binding specificity, and how replacing only a few key residues allows the U2B″ and U1A proteins to discriminate between their cognate RNA hairpins by forming alternative networks of interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino-acid sequences of the U2B″ and U2A′ (U2LRR) proteins and their RNA binding site.
Figure 2: Overall structure of the U2B″–U2A′ (U2LRR) protein complex bound to hairpin IV of U2 snRNA.
Figure 3: Comparison of the RNA–protein interfaces between the U2B″/U2LRR(U2A′)/RNA complex and the U1A protein–RNA complex10.
Figure 4: Interaction between U2A′ (U2 LRR) protein and the RNA stem in the U2B″/U2LRR/RNA and hypothetical U1A/U2LRR/RNA complexes.

Similar content being viewed by others

References

  1. Uhlenbeck, OC., Pardi, A. & Feigon, J. RNA structure comes of age. Cell 90, 833–840 (1997).

    Article  CAS  Google Scholar 

  2. Nagai, K. RNA–protein complexes. Curr. Opin. Struct. Biol. 6, 53–61 (1996).

    Article  CAS  Google Scholar 

  3. Burd, C. G. & Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Birney, E., Kumar, S. & Krainer, A. Analysis of the RNA-recognition motif and RS and RGG domains — Conservation in metazoan pre-messenger-RNA splicing factors. Nucleic Acids Res. 21, 5803–5816 (1993).

    Article  CAS  Google Scholar 

  5. Mattaj, I. W. RNA recognition: A family matter? Cell 73, 837–840 (1993).

    Article  CAS  Google Scholar 

  6. Shamoo, Y., Krueger, U., Rice, L. M., Williams, K. R. & Steitz, T. A. Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 å esolution. Nature Struct. Biol. 4, 215–222 (1997).

    Article  CAS  Google Scholar 

  7. Xu, R.-M., Jokhan, L., Cheng, X., Mayeda, A. & Krainer, A. R. Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs. Structure 5, 559–570 (1997).

    Article  CAS  Google Scholar 

  8. Nagai, K., Oubridge, C., Ito, N., Avis, J. & Evans, P. The RNP domain — A sequence-specific RNA-binding domain involved in processing and transport of RNA. Trends Biochem. Sci. 20, 235–240 (1995).

    Article  CAS  Google Scholar 

  9. Nagai, K., Oubridge, C., Jessen, T.-H., Li, J. & Evans, P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 348, 515–520 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Oubridge, C., Ito, N., Evans, P. R., Teo, C.-H. & Nagai, K. Crystal structure at 1.92 å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Habets, W. J.et al. Analysis of a cDNA clone expressing a human autoimmune antigen — Full-length sequence of the U2 small nuclear RNA-associated B″ antigen. Proc. Natl Acad. Sci. USA 84, 2421–2425 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Sillekens, P. T. G. & Habets, W. J., Beijer, R. P. & van Venrooij, W. J. cDNA cloning of the human U1 snRNA-associated A protein: extensive homology between U1 and U2 snRNP-specific proteins. EMBO J. 6, 3841–3848 (1987).

    Article  CAS  Google Scholar 

  13. Scherly, D., Boelens, W., Dathan, N. A., van Venrooij, W. J. & Mattaj, I. W. Major determinants of the specificity of interaction between small nuclear ribonucleoprotein-U1A and ribonucleoprotein-U2B″ and their cognate RNAs. Nature 345, 502–506 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Boelens, W.et al. Aweak interaction between the U2A′ protein and U2 snRNA helps to stabilize their complex with the U2 B″ protein. Nucleic Acids Res. 19, 455–460 (1990).

    Article  Google Scholar 

  15. Sillekens, P. T. G., Beijer, R. P., Habets, W. J. & van Venrooij, W. J. Molecular cloning of the cDNA for the human U2 snRNA-specific A′ protein. Nucleic Acids Res. 17, 1893–1906 (1989).

    Article  CAS  Google Scholar 

  16. Fresco, L. D., Harper, D. S. & Keene, J. D. Leucine periodicity of U2 small nuclear ribonucleoprotein particle (snRNP) A′-protein is implicated in snRNP assembly via protein–protein interactions. Mol. Cell. Biol. 11, 1578–1589 (1991).

    Article  CAS  Google Scholar 

  17. Kobe, B. & Deisenhofer, J. Proteins with leucine-rich repeats. Curr. Opin. Struct. Biol. 5, 409–416 (1995).

    Article  CAS  Google Scholar 

  18. Kajava, A. V., Vassart, G. & Wodak, S. J. Modeling of the 3-dimensional structure of proteins with the typical leucine-rich repeats. Structure 3, 867–877 (1995).

    Article  CAS  Google Scholar 

  19. Buchanan, S. G. S. & Gay, N. J. Structural and functional diversity in the leucine rich repeat family of proteins. Prog. Biophys. Molec. Biol. 65, 1–44 (1996).

    Article  CAS  Google Scholar 

  20. Scherly, D.et al. Identification of the RNA binding segment of human U1A protein and definition of its binding site on U1 snRNA. EMBO J. 8, 4163–4170 (1989).

    Article  CAS  Google Scholar 

  21. Scherly, D., Dathan, N. A., Boelens, W., van Venrooij, W. J. & Mattaj, I. W. The U2B″ RNP motif as a site of protein–protein interaction. EMBO J. 9, 3675–3682 (1990).

    Article  CAS  Google Scholar 

  22. Scherly, D., Kambach, C., Boelens, W., van Venrooij, W. J. & Mattaj, I. W. Conserved amino acid residues within and outside of the N-terminal ribonucleoprotein motif of U1A small nuclear ribonucleoprotein involved in U1 RNA binding. J. Mol. Biol. 219, 577–584 (1991).

    Article  CAS  Google Scholar 

  23. Kobe, B. & Deisenhofer, J. Crystal-structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366, 751–756 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Kobe, B. & Deisenhofer, J. A. Structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183–186 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Bentley, R. C. & Keene, J. D. Recognition of U1 and U2 small nuclear RNAs can be altered by a 5-amino-acid segment in the U2 small nuclear ribonucleoprotein particle (snRNP) B″ protein and through interactions with U2 snRNP-A′ protein. Mol. Cell. Biol. 11, 1829–1839 (1991).

    Article  CAS  Google Scholar 

  26. Saenger, W. Principles of Nucleic Acid Structure(Springer, New York, (1984)).

    Book  Google Scholar 

  27. Tsai, D. E., Harper, D. S. & Keene, J. D. U1-snRNP-A protein selects a 10-nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucleic Acids Res. 19, 4931–4936 (1991).

    Article  CAS  Google Scholar 

  28. Williams, D. J. & Hall, K. B. RNA hairpin with non-nucleotide spacers binds efficiently to the human U1A protein. J. Mol. Biol. 257, 265–275 (1996).

    Article  CAS  Google Scholar 

  29. Boelens, W. C.et al. The human U1 snRNP-specific U1A protein inhibits polyadenylation of its own pre-mRNA. Cell 72, 881–892 (1993).

    Article  CAS  Google Scholar 

  30. van Gelder, C. W. G.et al. Acomplex secondary structure in U1A pre-mRNA that binds two molecules of U1A protein is required for regulation of polyadenylation. EMBO J. 12, 5191–5200 (1993).

    Article  CAS  Google Scholar 

  31. Jovine, L., Oubridge, C., Avis, J. M. & Nagai, K. Two structurally different RNA molecules are bound by the spliceosomal protein U1A by the same recognition strategy. Structure 4, 621–631 (1996).

    Article  CAS  Google Scholar 

  32. Allain, F. H.-T., Howe, P. W. A., Neuhaus, D. & Varani, G. Structural basis of the RNA binding specificity of human U1A protein. EMBO J. 16, 5764–5774 (1997).

    Article  CAS  Google Scholar 

  33. Jessen, T.-H., Oubridge, C., Teo, C. H., Pritchard, C. & Nagai, K. Identification of molecular contacts between the U1A small nucelar ribonucleoprotein and U1 RNA. EMBO J. 10, 3447–3456 (1991).

    Article  CAS  Google Scholar 

  34. Harper, D. S., Fresco, L. D. & Keene, J. D. RNA-binding specificity of a Drosophila snRNP protein that shares sequence homology with mammalian U1-A and U2-B″ proteins. Nucleic Acids Res. 20, 3645–3650 (1992).

    Article  CAS  Google Scholar 

  35. Polycarpou-Schwarz, M., Gunderson, S. I., Kandelslewis, S., Seraphin, B. & Mattaj, I. W. Drosophila SNF/D25 combines the functions of the 2 snRNP proteins U1A and U2B″ that are encoded separately in human, potato and yeast. RNA 2, 11–23 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Laird-Offringa, I. A. & Belasco, J. G. Analysis of RNA-binding proteins by in vitro genetic selection: identification of an amino-acid residue important for locking U1A onto its RNA target. Proc. Natl Acad. Sci. USA 92, 11859–11863 (1995).

    Article  ADS  CAS  Google Scholar 

  37. Biswas, R., Wahl, M. C., Ban, C. & Sundaralingam, M. Crystal Structure of an alternating octamer r(GUAUGUA)dC with adjacent G-U wobble pairs. J. Mol. Biol. 267, 1149–1156 (1997).

    Article  CAS  Google Scholar 

  38. Avis, J.et al. Solution structure of the N-terminal RNP domain of U1A protein: the role of C-terminal residues in structural stability and RNA binding. J. Mol. Biol. 257, 398–411 (1996).

    Article  CAS  Google Scholar 

  39. Hall, K. B. Interaction of RNA hairpins with the human U1A N-terminal RNA binding domain. Biochemistry 33, 10076–10088 (1994).

    Article  CAS  Google Scholar 

  40. Luisi, B. F.et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497–505 (1991).

    Article  ADS  CAS  Google Scholar 

  41. Schwabe, J. W. R., Chapman, L., Finch, J. T. & Rhodes, D. The crystal structure of the estrogen receptor DNA binding domain bound to DNA: How receptors discriminate between their response elements. Cell 75, 567–578 (1993).

    Article  CAS  Google Scholar 

  42. Patikoglou, G. & Burley, S. K. Eukaryotic transcription factor–DNA complexes. Annu. Rev. Biophys. Biomol. Struct. 26, 289–325 (1997).

    Article  CAS  Google Scholar 

  43. Oubridge, C., Ito, N., Teo, H.-C., Fearnley, I. & Nagai, K. Crystallisation of RNA–protein complexes. II. The application of protein engineering for crystallisation of the U1A protein-RNA complex. J. Mol. Biol. 249, 409–423 (1995).

    Article  CAS  Google Scholar 

  44. Price, S. R., Oubridge, C., Varani, G. & Nagai, K. in RNA–Protein Interactions. A Practical Approach(ed. Smith, C. W. J.) 37–74 (Oxford University Press, Oxford, (1998)).

    Google Scholar 

  45. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

    Google Scholar 

  46. De la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Meth. Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  47. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1ATPase. Acta Crystallogr. D52, 30–42 (1996).

    CAS  Google Scholar 

  48. Jones, T. A. & Kjeldgaard, M. O — The Manual(Uppsala University, Sweden, (1994)).

    Google Scholar 

  49. Nicholls, K. A., Sharp, B. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Protein: Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  50. Esnouf, R. M. An extensively modified version of MolScript that incudes greatly enhanced coloring capabilities. J. Mol. Graphics 15, 133–138 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank W. Scott, E. de la Fortelle, J Li, H. Teo, C. Oubridge and C. Kambach, L.Jovine and A. McCoy for their help; M. Perutz, A. Klug, D. Rhodes and J. Schwabe for critically reading the manuscript; G. Lingley, A. Lenton and K. Nagai for the illustrations; and staff at the ELETTRA, Daresbury and EMBL Hamburg synchrotrons for help with data collection. S.R.P. was supported by an MRC studentship. This project was funded by the MRC and Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Nagai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, S., Evans, P. & Nagai, K. Crystal structure of the spliceosomal U2B″–U2A′ protein complex bound to a fragment of U2 small nuclear RNA. Nature 394, 645–650 (1998). https://doi.org/10.1038/29234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29234

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing