Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functionally significant central-pair rotation in a primitive eukaryotic flagellum

Abstract

There is now considerable evidence that the basis for ciliary and flagellar movement is an active sliding between peripheral doublet microtubules which, when resisted by structures within the axoneme, leads to axonemal bend formation1–4. In contrast, relatively little is known about the control mechanisms which coordinate the interdoublet sliding and axonemal bending to produce the effective motion observed in various cilia and flagella5. One component of the axoneme which may be involved in this control is the central pair of microtubules6,7. To learn more about the action of the central pair, we have studied the tiny uniflagellate marine alga, Micromonas pusilla. The central tubules of the M. pusilla flagellum extend for several micrometres beyond the termination of the peripheral doublets8, thus permitting direct observation of the central pair during flagellar movement. Our findings, reported here, indicate that in living M. pusilla the central pair of microtubules undergoes continuous rotation in one direction. This rotation provides the motive force for the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Satir, P. J. Cell Biol. 39, 77–94 (1968).

    Article  CAS  Google Scholar 

  2. Summers, K. E. & Gibbons, I. R. Proc. natn. Acad. Sci. U.S.A. 68, 3092–3096 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Gibbons, B. H. & Gibbons, I. R. Biochem biophys. Res. Commun. 73, 1–6 (1976).

    Article  CAS  Google Scholar 

  4. Shingyogi, C., Murakami, A. & Takahashi, K. Nature 265, 269–270 (1977).

    Article  ADS  Google Scholar 

  5. Brokaw, C. J. & Gibbons, I. R. in Swimming and Flying in Nature (eds Wu, T. Y.-T. et al.) 89–126 (Plenum, New York, 1975).

    Google Scholar 

  6. Bessen, M. et al. J. Cell Biol. 86, 446–455 (1980).

    Article  CAS  Google Scholar 

  7. Omoto, C. K. & Kung, C. Nature 279, 532–534 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Manton, I. J. mar. Biol. Ass. U.K. 38, 319–333 (1959).

    Article  Google Scholar 

  9. Manton, I. & Parke, M. J. mar. Biol. Ass. U.K. 39, 275–298 (1960).

    Article  Google Scholar 

  10. Ringo, D. L. J. Cell Biol. 35, 543–571 (1967).

    Article  Google Scholar 

  11. Dute, R. & Kung, C. J. Cell Biol. 78, 451–464 (1978).

    Article  CAS  Google Scholar 

  12. Omoto, C. K. & Kung, C. J. Cell Biol. 87, 33–46 (1980).

    Article  CAS  Google Scholar 

  13. Tamm, S. L. & Tamm, S. J. Cell Sci. 20, 619–639 (1976).

    CAS  Google Scholar 

  14. Tamm, S. L. & Horridge, G. A. Proc. R. Soc. B 175, 219–233 (1970).

    ADS  Google Scholar 

  15. Jarosch, R. & Fuchs, B. Protoplasma 85, 285–290 (1975).

    Article  CAS  Google Scholar 

  16. Witman, G. B. et al. J. Cell Biol. 76, 729–747 (1978).

    Article  CAS  Google Scholar 

  17. Afzelius, B. A. J. Biophys. Biochem. Cytol. 9, 383–394 (1961).

    Article  CAS  Google Scholar 

  18. Gibbons, I. R. J. Biophys. Biochem. Cytol. 11, 179–205 (1961).

    Article  CAS  Google Scholar 

  19. Gibbons, I. R. in Molecules & Cell Movement (eds Inoué, S. & Stephens, R. E.) 207–232 (Raven, New York, 1975).

    Google Scholar 

  20. Starr, R. C. J. Phycol. 14, Suppl., 47–100 (1978).

    Article  Google Scholar 

  21. Spurr, A. R. J. ultrastruct. Res. 26, 31–43 (1969).

    Article  CAS  Google Scholar 

  22. Reynolds, E. S. J. Cell Biol. 17, 208–212 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omoto, C., Witman, G. Functionally significant central-pair rotation in a primitive eukaryotic flagellum. Nature 290, 708–710 (1981). https://doi.org/10.1038/290708a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/290708a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing