Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Movement of microorganisms in viscous environments

Abstract

SOME microorganisms swim well in solutions containing viscous agents (molecules with long unbranched chains, such as methylcellulose)1–7. Leptospira, a slender helical bacterium, swims more rapidly in such an environment than it does in water3, even at viscosities of several hundred centipoise (1 cP = 10−3 kg m−1 s−1). This behaviour is baffling until one realises that solutions of viscous agents are highly structured (gel-like). The solute forms a loose quasi-rigid network easily penetrated by particles of microscopic size. The network can exert forces normal to a segment of the body of a slender cell even when that segment does not possess a component of velocity in the normal direction; hydrodynamic treatments of the motion of microorganisms (or of cilia and flagella) do not apply. Solutions containing highly branched polymers, for example, Ficoll, are much more homogeneous. Here, we will review existing evidence for the gel-like character of viscous agents and describe experiments in which the motion of Leptospira or Escherichia coli are compared in solutions of methylcellulose and Ficoll of the same apparent viscosity. Our data show that solutions of methylcellulose are gel-like even when quite dilute, when the bulk viscosity is as small as 2 cP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shoesmith, J. G. J. gen. Microbiol. 22, 528–535 (1960).

    Article  Google Scholar 

  2. Schneider, W. R. & Doetsch, R. N. J. Bact. 117, 696–701 (1974).

    CAS  PubMed  Google Scholar 

  3. Kaiser, G. E. & Doetsch, R. N. Nature 255, 656–657 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Strength, W. J. et al. Int. J. Syst. Bact. 26, 253–268 (1976).

    Article  Google Scholar 

  5. Greenberg, E. P. & Canale-Parola, E. J. Bact. 131, 960–969 (1977).

    CAS  PubMed  Google Scholar 

  6. Greenberg, E. P. & Canale-Parola, E. J. Bact. 132, 356–358 (1977).

    CAS  PubMed  Google Scholar 

  7. Canale-Parola, E. A. Rev. Microbiol. 32, 69–99 (1978).

    Article  CAS  Google Scholar 

  8. Davis, W. E. & Elliott, J. H. in Cellulose and Cellulose Derivatives Vol. 5, Part 3, 2nd edn (eds Ott, E., Spurlin, H. M. & Grafflin, M. W.) 1203–1246 (Interscience, New York, 1955).

    Google Scholar 

  9. Laurent, T. C., Ryan, M. & Pietruszkiewicz, A. Biochim. biophys. Acta 42, 476–485 (1960).

    Article  CAS  Google Scholar 

  10. Laurent, T. C., Björk,I., Pietruszkiewicz, A. & Persson, H. Biochim. biophys. Acta 78, 351–359 (1963).

    Article  CAS  Google Scholar 

  11. Ackers, G. K. & Steere, R. L. Biochim. biophys. Acta 59, 137–149 (1962).

    Article  CAS  Google Scholar 

  12. Preston, B. N., Björn, Ö. & Laurent, T. C. Eur. J. Biochem. 33, 401–406 (1973).

    Article  CAS  Google Scholar 

  13. Maroudas, N. G., Whittenberger, B. & Glaser, L. Nature 274, 722 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Canale-Parola, E., Rosenthal, S. L. & Kupfer, D. G. Antonie van Leeuwenhoek. 32, 113–124 (1966).

    Article  CAS  Google Scholar 

  15. Breznak, J. A. & Canale-Parola, E. J. Bact. 97, 386–395 (1969).

    CAS  PubMed  Google Scholar 

  16. Canale-Parola, E. in Methods in Microbiology Vol. 8 (eds Norris, J. R. & Ribbons, D. W.) 61–73 (Academic, New York, 1973).

    Google Scholar 

  17. Breznak, J. A. & Canale-Parola, E. Archs Microbiol. 105, 1–12 (1975).

    Article  CAS  Google Scholar 

  18. Hespell, R. B. Int. J. Syst. Bact. 27, 371–381 (1977).

    Article  CAS  Google Scholar 

  19. Cox, C. D. & Larson, A. D. J. Bact. 73, 587–589 (1957).

    CAS  PubMed  Google Scholar 

  20. Metzner, P. Jb. wiss. Bot. 59, 325–412 (1920).

    Google Scholar 

  21. Berg, H. C., Bromley, D. B. & Charon, N. W. in 28th Symp. Soc. gen. Microbiol. (eds Stanier, R. Y., Rogers, H. J. & Ward, J. B.) 285–294 (Cambridge, London, 1978).

    Google Scholar 

  22. Noguchi, H. J. exp. Med. 27, 575–592 (1918).

    Article  CAS  Google Scholar 

  23. Jarosch, R. Öst. bot. Z. 114, 255–306 (1967).

    Article  Google Scholar 

  24. Cox, P. J. & Twigg, G. I. Nature 250, 260–261 (1974).

    Article  ADS  CAS  Google Scholar 

  25. Gray, J. Q. Jl microsc. Sci. 94, 551–578 (1953).

    Google Scholar 

  26. Chwang, A. T., Winet, H. & Wu, T. Y. J. Mechanochem. Cell Motility 3, 69–76 (1974).

    CAS  Google Scholar 

  27. Berg, H. C. J. theor. Biol. 56, 269–273 (1976).

    Article  CAS  Google Scholar 

  28. Gillespie, T. J. Polym. Sci. 46, 383–393 (1960).

    Article  ADS  CAS  Google Scholar 

  29. Sundelöf, L.-O. & Nyström, B. J. Polym. Sci. Polym. Lett. Ed. 15, 377–384 (1977).

    Article  ADS  Google Scholar 

  30. Winet, H. J. exp. Biol. 64, 283–302 (1976).

    CAS  PubMed  Google Scholar 

  31. Johnson, R. C. & Harris, V. G. J. Bact. 94, 27–31 (1967).

    CAS  PubMed  Google Scholar 

  32. Berg, H. C. & Tedesco, P. M. Proc. natn. Acad. Sci. U.S.A. 72, 3235–3239 (1975).

    Article  ADS  CAS  Google Scholar 

  33. Berg, H. C. Nature 249, 77–79 (1974).

    Article  ADS  CAS  Google Scholar 

  34. Kobayasi, S., Maeda, K. & Imae, Y. Rev. Sci. Instrum. 48, 407–410 (1977).

    Article  ADS  CAS  Google Scholar 

  35. Reichert, K. Zentbl. Bakt. ParasitKde Abt. 1 Orig. 51, 14–94 (1909).

    Google Scholar 

  36. Pijper, A. J. Path. Bact. 58, 325–342 (1946).

    Article  CAS  Google Scholar 

  37. Pijper, A. J. Bact. 53, 257–269 (1947).

    CAS  PubMed  Google Scholar 

  38. Shimada, K., Kamiya, R. & Asakura, S. Nature 254, 332–334 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BERG, H., TURNER, L. Movement of microorganisms in viscous environments. Nature 278, 349–351 (1979). https://doi.org/10.1038/278349a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/278349a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing