Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Shape selectivity in primate lateral intraparietal cortex

Abstract

The extrastriate visual cortex can be divided into functionally distinct temporal and parietal regions, which have been implicated in feature-related (‘what’) and spatial (‘where’) vision, respectively1. Neuropsychological studies of patients with damage to either the temporal or the parietal regions provide support for this functional distinction2,3,4. Given the prevailing modular theoretical framework and the fact that prefrontal cortex receives inputs from both temporal and parietal streams5,6, recent studies have focused on the role of prefrontal cortex in understanding where and how information about object identity is integrated with (or remains segregated from) information about object location7,8,9,10. Here we show that many neurons in primate posterior parietal cortex (the ‘where’ pathway) show sensory shape selectivities to simple, two-dimensional geometric shapes while the animal performs a simple fixation task. In a delayed match-to-sample paradigm, many neuronal units also show significant differences in delay-period activity, and these differences depend on the shape of the sample. These results indicate that units in posterior parietal cortex contribute to attending to and remembering shape features in a way that is independent of eye movements, reaching, or object manipulation. These units show shape selectivity equivalent to any shown in the ventral pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses of two neurons during the passive fixation task.
Figure 2: Histogram showing the magnitude of the sensory shape selectivity during the passive fixation task the population of units recorded.
Figure 3: Responses of two neurons during the delayed match-to-sample task.
Figure 4: Histogram showing the magnitude of the delay-period shape selectivity during the match-to-sample task for the population of units recorded.

Similar content being viewed by others

References

  1. Ungerleider, L. G. & Mishkin, M. in The Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, MA, 1982).

    Google Scholar 

  2. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  Google Scholar 

  3. Farah, M. J. Visual Agnosia (MIT Press, Cambridge, MA, 1990).

    Google Scholar 

  4. Perenin, M. & Vighetto, A. Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111, 643–674 (1988).

    Article  Google Scholar 

  5. Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

    Article  CAS  Google Scholar 

  6. Webster, M. J., Bachevalier, J. & Ungerleider, L. G. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque. Cerebral Cortex 5, 470–483 (1994).

    Article  Google Scholar 

  7. Wilson, F. A. W., OScalaidhe, S. P. & Goldman-Rakic, P. S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Rao, C. S., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276, 821–824 (1997).

    Article  CAS  Google Scholar 

  9. O Scalaidhe, S. P., Wilson, F. A. W. & Goldman-Rakic, P. S. Areal segregation of face-processing neurons in prefrontal cortex. Science 278, 1135–1138 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G. & Haxby, J. V. An area specialized for spatial working memory in human frontal cortex. Science 279, 1347–1351 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Taira, M., Mine, S., Georgopoulos, A. P., Murata, A. & Sakata, H. Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp. Brain Res. 83, 29–36 (1990).

    Article  CAS  Google Scholar 

  12. Murata, A., Gallese, V., Kaseda, M. & Sakata, H. Parietal neurons related to memory-guided hand manipulation. J. Neurophysiol. 75, 2180–2186 (1996).

    Article  CAS  Google Scholar 

  13. Jeannerod, M. The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behav. Brain Res. 19, 99–116 (1986).

    Article  CAS  Google Scholar 

  14. Gallese, V., Murata, A., Kaseda, M., Niki, N. & Sakata, H. Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5, 1525–1529 (1994).

    Article  CAS  Google Scholar 

  15. Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Andersen, R. A. Saccade-related activity in the lateral intraparietal area II. Spatial properties. J. Neurophysiol. 66, 1109–1124 (1991).

    Article  CAS  Google Scholar 

  16. Andersen, R. A., Asanuma, C., Essick, G. & Seigel, R. M. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296, 65–113 (1990).

    Article  CAS  Google Scholar 

  17. Shadlen, M. Look but don't touch, or vice versa. Nature 386, 122–123 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Rizzolatti, G., Riggio, L. & Sheliga, B. M. in Attention and Performance XV (eds Umiltà, C. & Moscovitch, M.) 231–265 (MIT Press, Cambridge, MA, 1994).

    Google Scholar 

  19. Colby, C. L. Action-oriented spatial reference frames in cortex. Neuron 20, 15–24 (1998).

    Article  CAS  Google Scholar 

  20. Goodale, M. A. et al. Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr. Biol. 4, 604–610 (1994).

    Article  CAS  Google Scholar 

  21. Jeannerod, M., Arbib, M. A., Rizzolatti, G. & Sakata, H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18, 314–320 (1995).

    Article  CAS  Google Scholar 

  22. Sakata, H., Taira, M., Murata, A. & Mine, S. Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cerebr. Cortex 5, 429–438 (1995).

    Article  CAS  Google Scholar 

  23. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Goldberg, M. E. & Gottlieb, J. Neurons in monkey LIP transmit information about stimulus pattern in the temporal waveform of their discharge. Soc. Neurosci. Abstr. 23, 17 (1997).

    Google Scholar 

  25. Troscianko, T. et al. Human colour discrimination based on a non-parvocellular pathway. Curr. Biol. 6, 200–210 (1996).

    Article  CAS  Google Scholar 

  26. Blatt, G. J., Andersen, R. A. & Stoner, G. R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol. 299, 421–445 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Briand, R. Klein, S. Lehky and S. O Scalaidhe for comments on the manuscript. This work was supported by awards from the McDonnell–Pew Foundation, NARSAD, NIMH, and NEI. J.H.R.M. is an Investigator with the Howard Hughes Medical Institute. Animal experiments were conducted in accordance with the Baylor College of Medicine and Rutgers University Animal Care Committees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Sereno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sereno, A., Maunsell, J. Shape selectivity in primate lateral intraparietal cortex. Nature 395, 500–503 (1998). https://doi.org/10.1038/26752

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26752

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing