Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift

Abstract

Superconductivity — one of the best understood many-body problems in physics — has again become a challenge following the discovery of unconventional superconducting materials: these include heavy-fermion1, organic2 and the high-transition-temperature copper oxide3 superconductors. In conventional superconductors, the electrons form superconducting Cooper pairs in a spin-singlet state, which has zero total spin (S = 0). In principle, Cooper pairs can also form in a spin-triplet state (S = 1), analogous to the spin-triplet ‘p-wave’ state of paired neutral fermions in superfluid 3He (ref. 4). At present, the heavy-fermion compound UPt3 is the only known spin-triplet superconductor5,6, although the layered oxide superconductor Sr2RuO4 (ref. 7) is believed, on theoretical grounds8, to be a promising candidate. The most direct means of identifying the spin state of Cooper pairs is from measurements of their spin susceptibility, which can be determined by the Knight shift (as probed by nuclear magnetic resonance (NMR)). Here we report Knight-shift measurements of Sr2RuO2 using 17O NMR. Our results show no change in spin susceptibility on passing through the superconducting transition temperature, which provides the definitive identification of Sr2RuO4 as a spin-triplet superconductor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: K–χ plot of Sr2RuO4.
Figure 2: 17O NMR spectra of O(1)x and O(1)y in both the normal (bottom) and the superconducting (top) state of Sr2RuO4.
Figure 3: Temperature dependence of K1x and K1y at low temperatures.

Similar content being viewed by others

References

  1. MacLaughlin, D. E. et al. Nuclear magnetic resonance and heavy-fermion superconductivity in (U,Th)Be13. Phys. Rev. Lett. 53, 1833–1836 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Mayaffre, H. et al. Superconducting state of κ-(ET)2Cu[N(CN)2]Br studied by 13C NMR: evidence for vortex-core-induced nuclear relaxation and unconventional pairing. Phys. Rev. Lett. 75, 4122–4125 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Kitaoka, Y. et al. Nuclear relaxation and Knight shift studies of copper in YBa2Cu3O7−y. J. Phys. Soc. Jpn 57, 30–33 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Lee, D. M. The extraordinary phase of liquid 3He. Rev. Mod. Phys. 69, 645–665 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Tou, H. et al. Odd-parity superconductivity with parallel spin pairing in UPt3: evidence from 195Pt Knight shift study. Phys. Rev. Lett. 77, 1374–1377 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Tou, H. et al. Nonunitary spin-triplet superconductivity in UPt3: evidence from 195Pt Knight shift study. Phys. Rev. Lett. 80, 3129–3132 (1996).

    Article  ADS  Google Scholar 

  7. Maeno, Y. et al. Superconductivity in a layered perovskite without copper: Sr2RuO4. Nature 372, 532–534 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Rice, T. M. & Sigrist, M. Sr2RuO4: an electronic analogue of 3He? J. Phys. Condens. Matter 7, L643–L648 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Hebel, L. C. & Slichter, C. P. Nuclear spin relaxation in normal and superconducting aluminum. Phys. Rev. 113, 1504–1519 (1959).

    Article  ADS  CAS  Google Scholar 

  10. Ishida, K. et al. Anisotropic pairing in superconducting Sr2RuO4: Ru NMR and NQR studies. Phys. Rev. B 56, R505–R508 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Luke, G. M. et al. Time-reversal symmetry breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Yosida, K. Paramagnetic susceptibility in superconductors. Phys. Rev. 110, 769 (1958).

    Article  ADS  Google Scholar 

  14. Barrett, S. E. et al. 63Cu Knight shift in the superconducting state of YBa2Cu3O7−δ. Phys. Rev. B 41, 6283–6296 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Ishida, K. et al. Cu NMR and NQR studies of impurities-doped YBa2(Cu1−xMx)3O7(M=Zn and Ni). J. Phys. Soc. Jpn 62, 2803–2818 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Oguchi, T. Electronic band structure of the superconductor Sr2RuO4. Phys. Rev. B 51, 1385–1388 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Maeno, Y. et al. Two dimensional Fermi liquid behavior of the superconductor Sr2RuO4. J. Phys. Soc. Jpn 66, 1405–1408 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Mazin, I. I. & Singh, D. J. Ferromagnetic spin fluctuation induced superconductivity in Sr2RuO4. Phys. Rev. Lett. 79, 733–736 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Kanoda, K. NMR relaxation rate in the superconducting state of the organic conductor, κ(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 54, 76–79 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Anderson, P. W. Knight shift in superconductors. Phys. Rev. Lett. 3, 325–356 (1959).

    Article  ADS  CAS  Google Scholar 

  21. de Visser, A. et al. UPt3, heavy fermions and superconductivity. Physica B 147, 81–160 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Miyake, O. Narikiyo, M. Sigrist, K. Yamada, G.-q. Zheng and H. Tou, for discussions and comments, and T. Ando for magnetization measurements. This work was supported by the Grants-in-Aid for COE Research from the Ministry of Education, Sport, Science and Culture of Japan. One of us (H.M.) was supported by JPSJ research fellowships for young scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ishida.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, K., Mukuda, H., Kitaoka, Y. et al. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature 396, 658–660 (1998). https://doi.org/10.1038/25315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25315

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing